Search results for: unbounded-self-adjoint-operators-on-hilbert-space

Unbounded Self adjoint Operators on Hilbert Space

Author : Konrad Schmüdgen
File Size : 42.83 MB
Format : PDF, ePub
Download : 917
Read : 853
Download »
The book is a graduate text on unbounded self-adjoint operators on Hilbert space and their spectral theory with the emphasis on applications in mathematical physics (especially, Schrödinger operators) and analysis (Dirichlet and Neumann Laplacians, Sturm-Liouville operators, Hamburger moment problem) . Among others, a number of advanced special topics are treated on a text book level accompanied by numerous illustrating examples and exercises. The main themes of the book are the following: - Spectral integrals and spectral decompositions of self-adjoint and normal operators - Perturbations of self-adjointness and of spectra of self-adjoint operators - Forms and operators - Self-adjoint extension theory :boundary triplets, Krein-Birman-Vishik theory of positive self-adjoint extension

Unbounded Self Adjoint Operators on Hilbert Space

Author : Grace L. Marsden
File Size : 56.23 MB
Format : PDF
Download : 367
Read : 1170
Download »
This updated and expanded second edition of the Unbounded Self-adjoint Operators on Hilbert Space provides a user-friendly introduction to the subject, Taking a clear structural framework, it guides the reader through the subject's core elements. A flowing writing style combines with the use of illustrations and diagrams throughout the text to ensure the reader understands even the most complex of concepts. This succinct and enlightening overview is a required reading for all those interested in the subject . We hope you find this book useful in shaping your future career & Business. Feel free to send us your inquiries related to our publications to [email protected] PW Publishers LTD Berlin Germany

Unbounded Self Adjoint Operators on Hilbert Space

Author : Ellis I. Morris
File Size : 24.4 MB
Format : PDF, ePub, Docs
Download : 882
Read : 299
Download »
This updated and expanded second edition of the Unbounded Self-adjoint Operators on Hilbert Space: 265 (Graduate Texts in Mathematics) provides a user-friendly introduction to the subject, Taking a clear structural framework, it guides the reader through the subject's core elements. A flowing writing style combines with the use of illustrations and diagrams throughout the text to ensure the reader understands even the most complex of concepts. This succinct and enlightening overview is a required reading for all those interested in the subject . We hope you find this book useful in shaping your future career & Business. Feel free to send us your inquiries related to our publications to [email protected]

Spectral Theory of Self Adjoint Operators in Hilbert Space

Author : Michael Sh. Birman
File Size : 45.10 MB
Format : PDF, Kindle
Download : 813
Read : 1257
Download »
It isn't that they can't see the solution. It is Approach your problems from the right end that they can't see the problem. and begin with the answers. Then one day, perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be com pletely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order" , which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Self adjoint Extensions in Quantum Mechanics

Author : D.M. Gitman
File Size : 27.11 MB
Format : PDF, Docs
Download : 555
Read : 870
Download »
This exposition is devoted to a consistent treatment of quantization problems, based on appealing to some nontrivial items of functional analysis concerning the theory of linear operators in Hilbert spaces. The authors begin by considering quantization problems in general, emphasizing the nontriviality of consistent operator construction by presenting paradoxes to the naive treatment. It then builds the necessary mathematical background following it by the theory of self-adjoint extensions. By considering several problems such as the one-dimensional Calogero problem, the Aharonov-Bohm problem, the problem of delta-like potentials and relativistic Coulomb problemIt then shows how quantization problems associated with correct definition of observables can be treated consistently for comparatively simple quantum-mechanical systems. In the end, related problems in quantum field theory are briefly introduced. This well-organized text is most suitable for students and post graduates interested in deepening their understanding of mathematical problems in quantum mechanics. However, scientists in mathematical and theoretical physics and mathematicians will also find it useful.

An Invitation to Unbounded Representations of Algebras on Hilbert Space

Author : Konrad Schmüdgen
File Size : 90.47 MB
Format : PDF, ePub
Download : 493
Read : 636
Download »
This textbook provides an introduction to representations of general ∗-algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of ∗-algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded ∗-algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensätze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.

A Primer on Hilbert Space Operators

Author : Piotr Sołtan
File Size : 60.95 MB
Format : PDF, Docs
Download : 618
Read : 1309
Download »
The book concisely presents the fundamental aspects of the theory of operators on Hilbert spaces. The topics covered include functional calculus and spectral theorems, compact operators, trace class and Hilbert-Schmidt operators, self-adjoint extensions of symmetric operators, and one-parameter groups of operators. The exposition of the material on unbounded operators is based on a novel tool, called the z-transform, which provides a way to encode full information about unbounded operators in bounded ones, hence making many technical aspects of the theory less involved.

Stable Approximate Evaluation of Unbounded Operators

Author : Charles W. Groetsch
File Size : 26.36 MB
Format : PDF, ePub
Download : 915
Read : 742
Download »
Spectral theory of bounded linear operators teams up with von Neumann’s theory of unbounded operators in this monograph to provide a general framework for the study of stable methods for the evaluation of unbounded operators. An introductory chapter provides numerous illustrations of unbounded linear operators that arise in various inverse problems of mathematical physics. Before the general theory of stabilization methods is developed, an extensive exposition of the necessary background material from the theory of operators on Hilbert space is provided. Several specific stabilization methods are studied in detail, with particular attention to the Tikhonov-Morozov method and its iterated version.

Commutation Properties of Hilbert Space Operators and Related Topics

Author : Calvin R. Putnam
File Size : 79.83 MB
Format : PDF, Kindle
Download : 354
Read : 870
Download »
What could be regarded as the beginning of a theory of commutators AB - BA of operators A and B on a Hilbert space, considered as a dis cipline in itself, goes back at least to the two papers of Weyl [3] {1928} and von Neumann [2] {1931} on quantum mechanics and the commuta tion relations occurring there. Here A and B were unbounded self-adjoint operators satisfying the relation AB - BA = iI, in some appropriate sense, and the problem was that of establishing the essential uniqueness of the pair A and B. The study of commutators of bounded operators on a Hilbert space has a more recent origin, which can probably be pinpointed as the paper of Wintner [6] {1947}. An investigation of a few related topics in the subject is the main concern of this brief monograph. The ensuing work considers commuting or "almost" commuting quantities A and B, usually bounded or unbounded operators on a Hilbert space, but occasionally regarded as elements of some normed space. An attempt is made to stress the role of the commutator AB - BA, and to investigate its properties, as well as those of its components A and B when the latter are subject to various restrictions. Some applica tions of the results obtained are made to quantum mechanics, perturba tion theory, Laurent and Toeplitz operators, singular integral trans formations, and Jacobi matrices.

Functional Analysis

Author : Theo Bühler
File Size : 82.63 MB
Format : PDF, ePub, Docs
Download : 973
Read : 524
Download »
It begins in Chapter 1 with an introduction to the necessary foundations, including the Arzelà–Ascoli theorem, elementary Hilbert space theory, and the Baire Category Theorem. Chapter 2 develops the three fundamental principles of functional analysis (uniform boundedness, open mapping theorem, Hahn–Banach theorem) and discusses reflexive spaces and the James space. Chapter 3 introduces the weak and weak topologies and includes the theorems of Banach–Alaoglu, Banach–Dieudonné, Eberlein–Šmulyan, Kre&ibreve;n–Milman, as well as an introduction to topological vector spaces and applications to ergodic theory. Chapter 4 is devoted to Fredholm theory. It includes an introduction to the dual operator and to compact operators, and it establishes the closed image theorem. Chapter 5 deals with the spectral theory of bounded linear operators. It introduces complex Banach and Hilbert spaces, the continuous functional calculus for self-adjoint and normal operators, the Gelfand spectrum, spectral measures, cyclic vectors, and the spectral theorem. Chapter 6 introduces unbounded operators and their duals. It establishes the closed image theorem in this setting and extends the functional calculus and spectral measure to unbounded self-adjoint operators on Hilbert spaces. Chapter 7 gives an introduction to strongly continuous semigroups and their infinitesimal generators. It includes foundational results about the dual semigroup and analytic semigroups, an exposition of measurable functions with values in a Banach space, and a discussion of solutions to the inhomogeneous equation and their regularity properties. The appendix establishes the equivalence of the Lemma of Zorn and the Axiom of Choice, and it contains a proof of Tychonoff's theorem. With 10 to 20 elaborate exercises at the end of each chapter, this book can be used as a text for a one-or-two-semester course on functional analysis for beginning graduate students. Prerequisites are first-year analysis and linear algebra, as well as some foundational material from the second-year courses on point set topology, complex analysis in one variable, and measure and integration.

Introduction to Spectral Theory in Hilbert Space

Author : Gilbert Helmberg
File Size : 89.28 MB
Format : PDF, ePub, Docs
Download : 662
Read : 973
Download »
North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.

Ordinary Differential Operators

Author : Aiping Wang
File Size : 77.37 MB
Format : PDF
Download : 577
Read : 485
Download »
In 1910 Herman Weyl published one of the most widely quoted papers of the 20th century in Analysis, which initiated the study of singular Sturm-Liouville problems. The work on the foundations of Quantum Mechanics in the 1920s and 1930s, including the proof of the spectral theorem for unbounded self-adjoint operators in Hilbert space by von Neumann and Stone, provided some of the motivation for the study of differential operators in Hilbert space with particular emphasis on self-adjoint operators and their spectrum. Since then the topic developed in several directions and many results and applications have been obtained. In this monograph the authors summarize some of these directions discussing self-adjoint, symmetric, and dissipative operators in Hilbert and Symplectic Geometry spaces. Part I of the book covers the theory of differential and quasi-differential expressions and equations, existence and uniqueness of solutions, continuous and differentiable dependence on initial data, adjoint expressions, the Lagrange Identity, minimal and maximal operators, etc. In Part II characterizations of the symmetric, self-adjoint, and dissipative boundary conditions are established. In particular, the authors prove the long standing Deficiency Index Conjecture. In Part III the symmetric and self-adjoint characterizations are extended to two-interval problems. These problems have solutions which have jump discontinuities in the interior of the underlying interval. These jumps may be infinite at singular interior points. Part IV is devoted to the construction of the regular Green's function. The construction presented differs from the usual one as found, for example, in the classical book by Coddington and Levinson.

One dimensional Perturbation of Unbound Self adjoint Operators

Author : Cecil Eldon Leith
File Size : 21.82 MB
Format : PDF, Kindle
Download : 669
Read : 526
Download »

Ordinary Differential Operators

Author : Aiping Wang
File Size : 25.9 MB
Format : PDF, ePub, Mobi
Download : 593
Read : 600
Download »
In 1910 Herman Weyl published one of the most widely quoted papers of the 20th century in Analysis, which initiated the study of singular Sturm-Liouville problems. The work on the foundations of Quantum Mechanics in the 1920s and 1930s, including the proof of the spectral theorem for unbounded self-adjoint operators in Hilbert space by von Neumann and Stone, provided some of the motivation for the study of differential operators in Hilbert space with particular emphasis on self-adjoint operators and their spectrum. Since then the topic developed in several directions and many results and appli.

Compressions of Unbounded Normal Hilbert Space Operators

Author : John Michael Hosack
File Size : 51.1 MB
Format : PDF, Docs
Download : 377
Read : 842
Download »

Functional Analysis

Author : V.S. Sunder
File Size : 41.65 MB
Format : PDF, ePub, Mobi
Download : 545
Read : 531
Download »
In an elegant and concise fashion, this book presents the concepts of functional analysis required by students of mathematics and physics. It begins with the basics of normed linear spaces and quickly proceeds to concentrate on Hilbert spaces, specifically the spectral theorem for bounded as well as unbounded operators in separable Hilbert spaces. While the first two chapters are devoted to basic propositions concerning normed vector spaces and Hilbert spaces, the third chapter treats advanced topics which are perhaps not standard in a first course on functional analysis. It begins with the Gelfand theory of commutative Banach algebras, and proceeds to the Gelfand-Naimark theorem on commutative C*-algebras. A discussion of representations of C*-algebras follows, and the final section of this chapter is devoted to the Hahn-Hellinger classification of separable representations of commutative C*-algebras. After this detour into operator algebras, the fourth chapter reverts to more standard operator theory in Hilbert space, dwelling on topics such as the spectral theorem for normal operators, the polar decomposition theorem, and the Fredholm theory for compact operators. A brief introduction to the theory of unbounded operators on Hilbert space is given in the fifth and final chapter. There is a voluminous appendix whose purpose is to fill in possible gaps in the reader's background in various areas such as linear algebra, topology, set theory and measure theory. The book is interspersed with many exercises, and hints are provided for the solutions to the more challenging of these.

Introduction to Functional Analysis

Author : Reinhold Meise
File Size : 32.40 MB
Format : PDF, Docs
Download : 899
Read : 230
Download »
The book is written for students of mathematics and physics who have a basic knowledge of analysis and linear algebra. It can be used as a textbook for courses and/or seminars in functional analysis. Starting from metric spaces it proceeds quickly to the central results of the field, including the theorem of HahnBanach. The spaces (p Lp (X,(), C(X)' and Sobolov spaces are introduced. A chapter on spectral theory contains the Riesz theory of compact operators, basic facts on Banach and C*-algebras and the spectral representation for bounded normal and unbounded self-adjoint operators in Hilbert spaces. An introduction to locally convex spaces and their duality theory provides the basis for a comprehensive treatment of Fr--eacute--;chet spaces and their duals. In particular recent results on sequences spaces, linear topological invariants and short exact sequences of Fr--eacute--;chet spaces and the splitting of such sequences are presented. These results are not contained in any other book in this field.

Tomita Takesaki Theory in Algebras of Unbounded Operators

Author : Atsushi Inoue
File Size : 20.98 MB
Format : PDF
Download : 857
Read : 797
Download »
These notes are devoted to a systematic study of developing the Tomita-Takesaki theory for von Neumann algebras in unbounded operator algebras called O*-algebras and to its applications to quantum physics. The notions of standard generalized vectors and standard weights for an O*-algebra are introduced and they lead to a Tomita-Takesaki theory of modular automorphisms. The Tomita-Takesaki theory in O*-algebras is applied to quantum moment problem, quantum statistical mechanics and the Wightman quantum field theory. This will be of interest to graduate students and researchers in the field of (unbounded) operator algebras and mathematical physics.

PT Symmetric Schr dinger Operators with Unbounded Potentials

Author : Jan Nesemann
File Size : 61.90 MB
Format : PDF, ePub, Mobi
Download : 254
Read : 871
Download »
Jan Nesemann studies relatively bounded perturbations of self-adjoint operators in Krein spaces with real spectrum. The main results provide conditions which guarantee the spectrum of the perturbed operator to remain real. Similar results are established for relatively form-bounded perturbations and for pseudo-Friedrichs extensions. The author pays particular attention to the case when the unperturbed self-adjoint operator has infinitely many spectral gaps, either between eigenvalues or, more generally, between separated parts of the spectrum.

Spectral Theory of Operators in Hilbert Space

Author : Kurt O. Friedrichs
File Size : 78.88 MB
Format : PDF, Mobi
Download : 294
Read : 321
Download »
The present lectures intend to provide an introduction to the spectral analysis of self-adjoint operators within the framework of Hilbert space theory. The guiding notion in this approach is that of spectral representation. At the same time the notion of function of an operator is emphasized. The formal aspects of these concepts are explained in the first two chapters. Only then is the notion of Hilbert space introduced. The following three chapters concern bounded, completely continuous, and non-bounded operators. Next, simple differential operators are treated as operators in Hilbert space, and the final chapter deals with the perturbation of discrete and continuous spectra. The preparation of the original version of these lecture notes was greatly helped by the assistance of P. Rejto. Various valuable suggestions made by him and by R. Lewis have been incorporated. The present version of the notes contains extensive modifica tions, in particular in the chapters on bounded and unbounded operators. February, 1973 K.O.F. PREFACE TO THE SECOND PRINTING The second printing (1980) is a basically unchanged reprint in which a number of minor errors were corrected. The author wishes to thank Klaus Schmidt (Lausanne) and John Sylvester (New York) for their lists of errors. v TABLE OF CONTENTS I. Spectral Representation 1 1. Three typical problems 1 12 2. Linear space and functional representation.