Search results for: transport-phenomena-in-multiphase-flows

Transport Phenomena in Multiphase Flows

Author : Roberto Mauri
File Size : 56.85 MB
Format : PDF, ePub, Docs
Download : 632
Read : 672
Download »
This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy. It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory or for an advanced graduate course. The last 6 chapters will be of interest to more advanced researchers who might be interested in particular applications in physics, mechanical engineering or biomedical engineering. All chapters are complemented with exercises that are essential to complete the learning process.

Topics in Multiphase Transport Phenomena

Author : Robert W. Lyczkowski
File Size : 32.90 MB
Format : PDF, Mobi
Download : 428
Read : 1174
Download »
The story of multiphase science and computational fluid dynamics (CFD) has never been documented heretofore. It is a new and by now a rather robust science and one which must be told how it came to be before the founders and key contributors pass on. If any one of an amazing chain of incidents, and coincidences had never happened, multiphase science and CFD would never have evolved and the story this book tells would never have materialized. This book presents my personal recollection tracing the most signal events in the history of the initiation, development, and propagation phases of multiphase science and computational fluid dynamics (CFD) which initiated in 1970.

Transport Phenomena in Multiphase Systems

Author : Amir Faghri
File Size : 55.86 MB
Format : PDF, ePub, Mobi
Download : 121
Read : 981
Download »
Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors

Advances in Multiphase Flow and Heat Transfer

Author : Lixin Cheng
File Size : 46.38 MB
Format : PDF, Mobi
Download : 714
Read : 193
Download »
"Multiphase flow and heat transfer have found a wide range of applications in several engineering and science fields such as mechanical engineering, chemical and petrochemical engineering, nuclear engineering, energy engineering, material engineering, ocea"

Advances in Multiphase Flow and Heat Transfer

Author : Dieter Mewes
File Size : 78.26 MB
Format : PDF, Docs
Download : 929
Read : 477
Download »
Multiphase flow and heat transfer have found a wide range of applications in several engineering and science fields such as mechanical engineering, chemical and petrochemical engineering, nuclear engineering, energy engineering, material engineering, ocean engineering, mineral engineering, electronics and micro-electronics engineering, information technology, space technology, micro- and nano-technologies, biomedical and life sciences. This book series presents state-of-the-art review and research topics in all aspects of multiphase flow and heat transfer, which are contributed by renowned scientists and researchers. The topics include multiphase transport phenomena including gas-liquid, liquid-solid, gas-solid and gas-liquid-solid flows, phase change processes, nuclear thermal hydraulics, fluidization, mass transfer, bubble and drop dynamics, particle flow interactions, cavitation phenomena, numerical methods, experimental techniques, multiphase flow equipment, combustion processes, environmental protection and pollution control, phase change materials and their applications, macro-scale and micro-scale transport phenomena, nano-fluidics, micro-gravity multiphase flow and heat transfer, energy engineering, renewable energy, electronic chips cooling, data center cooling, fuel cells, multiphase flow and heat transfer in biomedical engineering and science. The book series presents recent advances in both conventional research and interdisciplinary research. This book series should prove to be invaluable for scientists and researchers interested in multiphase flows.

Transient Phenomena in Multiphase Flow

Author : Naim Afgan
File Size : 88.36 MB
Format : PDF, ePub, Docs
Download : 566
Read : 415
Download »

Transport Phenomena in Fuel Cells

Author : Bengt Sundén
File Size : 28.66 MB
Format : PDF, ePub, Mobi
Download : 330
Read : 695
Download »
Fuel cells are expected to play a significant role in the next generation of energy systems and road vehicles for transportation. However, substantial progress is required in reducing manufacturing costs and improving performance. This book aims to contribute to the understanding of the transport processes in solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC), which are of current interest. A wide range of topics is covered, featuring contributions from prominent scientists and engineers in the field. A detailed summary of state-of-the-art knowledge and future needs, this text will be of value to graduate students and researchers working on the development of fuel cells within academia and industry.

Basic Transport Phenomena in Materials Engineering

Author : Manabu Iguchi
File Size : 31.11 MB
Format : PDF, ePub, Mobi
Download : 917
Read : 510
Download »
This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material. The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material useful for the design of experiments and mathematical models in transport phenomena. This volume contains unique features not usually found in traditional transport phenomena texts. It integrates experimental techniques and theory, both of which are required to adequately solve the inherently complex problems in materials processing operations. It takes a holistic approach by considering both single and multiphase systems, augmented with specific practical examples. There is a discussion of flow and heat transfer in microscale systems, which is relevant to the design of modern processes such as fuel cells and compact heat exchangers. Also described are auxiliary relationships including turbulence modeling, interfacial phenomena, rheology, and particulate systems, which are critical to many materials processing operations.

Fundamentals of Multiphase Heat Transfer and Flow

Author : Amir Faghri
File Size : 43.35 MB
Format : PDF, Docs
Download : 638
Read : 352
Download »
This textbook presents a modern treatment of fundamentals of heat and mass transfer in the context of all types of multiphase flows with possibility of phase-changes among solid, liquid and vapor. It serves equally as a textbook for undergraduate senior and graduate students in a wide variety of engineering disciplines including mechanical engineering, chemical engineering, material science and engineering, nuclear engineering, biomedical engineering, and environmental engineering. Multiphase Heat Transfer and Flow can also be used to teach contemporary and novel applications of heat and mass transfer. Concepts are reinforced with numerous examples and end-of-chapter problems. A solutions manual and PowerPoint presentation are available to instructors. While the book is designed for students, it is also very useful for practicing engineers working in technical areas related to both macro- and micro-scale systems that emphasize multiphase, multicomponent, and non-conventional geometries with coupled heat and mass transfer and phase change, with the possibility of full numerical simulation.

Phase interface Phenomena in Multiphase Flow

Author : Geoffrey Frederick Hewitt
File Size : 57.82 MB
Format : PDF, Kindle
Download : 532
Read : 996
Download »
This volume in the series on heat and mass transfer encompasses papers presented at a conference in Dubrovnik in 1990. The topics covered include the physical interactions between phases and their interface, waves on interfaces, coalescence phenomena and surface tension and surfactant effects.

Two Phase Flow Boiling and Condensation

Author : S. Mostafa Ghiaasiaan
File Size : 32.93 MB
Format : PDF, Mobi
Download : 393
Read : 805
Download »
Providing a comprehensive introduction to the fundamentals and applications of flow and heat transfer in conventional and miniature systems, this fully enhanced and updated edition covers all the topics essential for graduate courses on two-phase flow, boiling, and condensation. Beginning with a concise review of single-phase flow fundamentals and interfacial phenomena, detailed and clear discussion is provided on a range of topics, including two-phase hydrodynamics and flow regimes, mathematical modeling of gas-liquid two-phase flows, pool and flow boiling, flow and boiling in mini and microchannels, external and internal-flow condensation with and without noncondensables, condensation in small flow passages, and two-phase choked flow. Numerous solved examples and end-of-chapter problems that include many common design problems likely to be encountered by students, make this an essential text for graduate students. With up-to-date detail on the most recent research trends and practical applications, it is also an ideal reference for professionals and researchers in mechanical, nuclear, and chemical engineering.

Multiphase Flow

Author : P. Vorobieff
File Size : 43.57 MB
Format : PDF, Mobi
Download : 562
Read : 455
Download »
The selected papers contained in this book present the latest research in one of the most challenging, yet most universally applicable areas of technology. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including many areas of science and engineering. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. It is perhaps, however, work on numerical solutions which is the most noticeable owing to the continuing improvements in computer software tools. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. The presented papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow.

Modeling Multiphase Materials Processes

Author : Manabu Iguchi
File Size : 43.64 MB
Format : PDF, Mobi
Download : 256
Read : 462
Download »
Modeling Multiphase Materials Processes: Gas-Liquid Systems describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of fluid, high temperature, coupled heat and mass transfer, chemical reactions in some cases, and poor wettability of the reactor walls. Also discussed are: solutions based on experimental and numerical modeling of bubbling jet systems, recent advances in the modeling of nanoscale multi-phase phenomena and multiphase flows in micro-scale and nano-scale channels and reactors. Modeling Multiphase Materials Processes: Gas-Liquid Systems will prove a valuable reference for researchers and engineers working in mathematical modeling and materials processing.

Transfer Phenomena in Fluid and Heat Flows XI

Author : Luiz Rocha
File Size : 40.86 MB
Format : PDF, ePub, Mobi
Download : 958
Read : 164
Download »
The topics covered in this special issue are related to the research of the phenomena of heat and mass transfer in the various areas of engineering and range from mathematics models and methods of numerical analysis of heat and mass transfer processes in generalized technical systems to the development of technologies in food and biomass processing and creation of real technical solutions in mechanical engineering.

Modelling and Applications of Transport Phenomena in Porous Media

Author : Jacob Bear
File Size : 41.60 MB
Format : PDF, ePub, Mobi
Download : 200
Read : 1246
Download »
Transport phenomenain porous media are encounteredin various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricul tural engineering and soil science. In these disciplines, problems are en countered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often, the void space of the porous material contains two or three fluid phases, and the various ex tensive quantities are transported simultaneously through the multiphase system. In all these disciplines, decisions related to a system's development and its operation have to be made. To do so a tool is needed that will pro vide a forecast of the system's response to the implementation of proposed decisions. This response is expressed in the form of spatial and temporal distributions of the state variables that describe the system's behavior. Ex amples of such state variables are pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real porous medium system and the transport phenomena that occur in it. Because the model is a sim plified version of the real system, no unique model exists for a given porous medium system. Different sets of simplifying assumptions, each suitable for a particular task, will result in different models.

Multiphase Flow and Fluidization

Author : Dimitri Gidaspow
File Size : 87.85 MB
Format : PDF, ePub, Docs
Download : 582
Read : 681
Download »
Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and introducing the new dependent variable--the volume fraction of the dispersed phase. Exercises at the end of each chapterare provided for further study and lead into applications not covered in the text itself. Treats fluidization as a branch of transport phenomena Demonstrates how to do transient, multidimensional simulation of multiphase processes The first book to apply kinetic theory to flow of particulates Is the only book to discuss numerical stability of multiphase equations and whether or not such equations are well-posed Explains the origin of bubbles and the concept of critical granular flow Presents clearly written exercises at the end of each chapter to facilitate understanding and further study

Multiphase Flow and Transport Processes in the Subsurface

Author : Rainer Helmig
File Size : 61.39 MB
Format : PDF, ePub, Docs
Download : 606
Read : 298
Download »
One important precondition for modeling multiphase flow and transport processes in the hydrosystem "subsurface" is the general formulation of a model. The objective of this book is to present a consistent, easily accessible formulation of the fundamental phenomena and concepts, to give a uniform description of mathematical and numerical modeling, and to show the latest developments in the field of simulation of multiphase processes, especially in porous and heterogeneous media. Some general aspects which affect the selection of the relevant processes and the corresponding parameters as well as the mathematical and numerical model concepts are discussed in detail.

Applied Optical Measurements

Author : Markus Lehner
File Size : 32.50 MB
Format : PDF, Docs
Download : 802
Read : 900
Download »
This book provides a compilation of important optical techniques applied to experiments in heat and mass transfer, multiphase flow and combustion. The emphasis of this book is on the application of these techniques to various engineering problems. The contributions are aiming to provide practicing engineers, both in industry and research, with the recent state of science in the application of advanced optical measurements. The book is written by selected specialists representing leading experts in this field who present new information for the possibilities of these techniques and give stimulation of new ideas for their application.

Multiphase Flow 1995

Author : A. Serizawa
File Size : 35.20 MB
Format : PDF, Kindle
Download : 351
Read : 995
Download »
There is increasing world-wide interest in obtaining an understanding of various multiphase flow phenomena and problems in terms of a common language of multiphase flow. This volume contains state-of-the-art papers which have been contributed from all over the world by experts working on all aspects of multiphase flows. The volume also highlights international technology-sharing in the fields of energy, environment and public health, in order to create a brighter and sustainable future for man and for all life in the next century. It is intended that this volume will serve as a major source of literature for the advancement of multiphase flow and allied fields.

Multiphase Flow Handbook

Author : Clayton T. Crowe
File Size : 82.37 MB
Format : PDF
Download : 782
Read : 1006
Download »
Because of the importance of multiphase flows in a wide variety of industries, including power, petroleum, and numerous processing industries, an understanding of the behavior and underlying theoretical concepts of these systems is critical. Contributed by a team of prominent experts led by a specialist with more than thirty years of experience, the Multiphase Flow Handbook provides such an understanding, and much more. It covers all aspects of multiphase flows, from fundamentals to numerical methods and instrumentation. The book begins with an introduction to the fundamentals of particle/fluid/bubble interactions followed by gas/liquid flows and methods for calculating system parameters. It includes up-to-date information on practical industrial applications such as boiling and condensation, fluidized beds, aerosols, separation systems, pollution control, granular and porous media flow, pneumatic and slurry transport, and sprays. Coverage then turns to the most recent information on particle/droplet-fluid interactions, with a chapter devoted to microgravity and microscale flows and another on basic multiphase interactions. Rounding out the presentation, the authors discuss numerical methods, state-of-the art instrumentation, and advanced experimental techniques. Supplying up-to-date, authoritative information on all aspects of multiphase flows along with numerous problems and examples, the Multiphase Flow Handbook is the most complete reference available for understanding the flow of multiphase mixtures.