Search results for: theoretical-neuroscience

Theoretical Neuroscience

Author : Peter Dayan
File Size : 81.22 MB
Format : PDF, Kindle
Download : 345
Read : 224
Download »
The construction and analysis of mathematical and computational models of neural systems.

Fundamentals of Computational Neuroscience

Author : Thomas Trappenberg
File Size : 53.15 MB
Format : PDF, Kindle
Download : 259
Read : 486
Download »
The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. It introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain. The book covers the introduction and motivation of simplified models of neurons that are suitable for exploring information processing in large brain-like networks. Additionally, it introduces several fundamental networkarchitectures and discusses their relevance for information processing in the brain, giving some examples of models of higher-order cognitive functions to demonstrate the advanced insight that can begained with such studies.

Computational Neuroscience

Author : Hanspeter A Mallot
File Size : 33.68 MB
Format : PDF, Kindle
Download : 612
Read : 655
Download »
Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.

Towards a Theoretical Neuroscience from Cell Chemistry to Cognition

Author : L Andrew Coward
File Size : 64.44 MB
Format : PDF, Docs
Download : 313
Read : 944
Download »
The book explains how to understand cognition in terms of brain anatomy, physiology and chemistry, using an approach adapted from techniques for understanding complex electronic systems. These techniques create hierarchies of information process based descriptions on different levels of detail, where higher levels contain less information and can therefore describe complete cognitive phenomena, but are more approximate. The nature of the approximations are well understood, and more approximate higher level descriptions can therefore be mapped to more precise detailed descriptions of any part of a phenomenon as required. Cognitive phenomena, the anatomy and connectivity of major brain structures, neuron physiology, and cellular chemistry are reviewed. Various cognitive tasks are described in terms of information processes performed by different major anatomical structures. These higher level descriptions are selectively mapped to more detailed physiological and chemical levels.

Mathematical and Theoretical Neuroscience

Author : Giovanni Naldi
File Size : 45.95 MB
Format : PDF, Docs
Download : 569
Read : 1295
Download »
This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical and numerical topics; statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.

Theoretical Neuroscience

Author : Laurence F. Abbott
File Size : 72.55 MB
Format : PDF, ePub, Docs
Download : 481
Read : 296
Download »
Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory. The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.

Journal of Theoretical Neurobiology

Author :
File Size : 63.16 MB
Format : PDF, Docs
Download : 718
Read : 1114
Download »

Advanced Data Analysis in Neuroscience

Author : Daniel Durstewitz
File Size : 85.69 MB
Format : PDF, ePub, Docs
Download : 728
Read : 637
Download »
This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanat ory frameworks, but become powerful, quantitative data-analytical tools in themselves that enable researchers to look beyond the data surface and unravel underlying mechanisms. Interactive examples of most methods are provided through a package of MatLab routines, encouraging a playful approach to the subject, and providing readers with a better feel for the practical aspects of the methods covered. "Computational neuroscience is essential for integrating and providing a basis for understanding the myriads of remarkable laboratory data on nervous system functions. Daniel Durstewitz has excellently covered the breadth of computational neuroscience from statistical interpretations of data to biophysically based modeling of the neurobiological sources of those data. His presentation is clear, pedagogically sound, and readily useable by experts and beginners alike. It is a pleasure to recommend this very well crafted discussion to experimental neuroscientists as well as mathematically well versed Physicists. The book acts as a window to the issues, to the questions, and to the tools for finding the answers to interesting inquiries about brains and how they function." Henry D. I. Abarbanel Physics and Scripps Institution of Oceanography, University of California, San Diego “This book delivers a clear and thorough introduction to sophisticated analysis approaches useful in computational neuroscience. The models described and the examples provided will help readers develop critical intuitions into what the methods reveal about data. The overall approach of the book reflects the extensive experience Prof. Durstewitz has developed as a leading practitioner of computational neuroscience. “ Bruno B. Averbeck

Computational Neuroscience and Cognitive Modelling

Author : Britt Anderson
File Size : 20.64 MB
Format : PDF, Mobi
Download : 281
Read : 515
Download »
"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.

Computational Neuroscience Theoretical Insights into Brain Function

Author : Paul Cisek
File Size : 44.82 MB
Format : PDF, ePub, Docs
Download : 628
Read : 1207
Download »
Computational neuroscience is a relatively new but rapidly expanding area of research which is becoming increasingly influential in shaping the way scientists think about the brain. Computational approaches have been applied at all levels of analysis, from detailed models of single-channel function, transmembrane currents, single-cell electrical activity, and neural signaling to broad theories of sensory perception, memory, and cognition. This book provides a snapshot of this exciting new field by bringing together chapters on a diversity of topics from some of its most important contributors. This includes chapters on neural coding in single cells, in small networks, and across the entire cerebral cortex, visual processing from the retina to object recognition, neural processing of auditory, vestibular, and electromagnetic stimuli, pattern generation, voluntary movement and posture, motor learning, decision-making and cognition, and algorithms for pattern recognition. Each chapter provides a bridge between a body of data on neural function and a mathematical approach used to interpret and explain that data. These contributions demonstrate how computational approaches have become an essential tool which is integral in many aspects of brain science, from the interpretation of data to the design of new experiments, and to the growth of our understanding of neural function. • Includes contributions by some of the most influential people in the field of computational neuroscience • Demonstrates how computational approaches are being used today to interpret experimental data • Covers a wide range of topics from single neurons, to neural systems, to abstract models of learning

Computational Neuroscience Trends in Research 2000

Author : J.M. Bower
File Size : 49.69 MB
Format : PDF, ePub, Docs
Download : 723
Read : 714
Download »
This volume includes papers originally presented at the 8th annual Computational Neuroscience meeting (CNS'99) held in July of 1999 in Pittsburgh, Pennsylvania. The CNS meetings bring together computational neuroscientists representing many different fields and backgrounds as well as experimental preparations and theoretical approaches. The papers published here range across vast levels of scale from cellular mechanisms to cognitive brain studies. The subjects of the research include many different preparations from invertebrates to humans. In all cases the work described in this volume is focused on understanding how nervous systems compute. The research described includes subjects like neural coding and neuronal dendrites and reflects a trend towards forging links between cognitive research and neurobiology. Accordingly, this volume reflects the breadth and depth of current research in computational neuroscience taking place throughout the world.

Computational Neuroscience Trends in Research 2004

Author : E. De Schutter
File Size : 90.6 MB
Format : PDF, Kindle
Download : 633
Read : 194
Download »
The CNS meetings bring together computational neuroscientists representing many different fields and backgrounds as well as many different experimental preparations and theoretical approaches. The papers published here range from pure experimental neurobiology, to neuro-ethology, mathematics, physics, and engineering. In all cases the research described is focused on understanding how nervous systems compute. The actual subjects of the research include a highly diverse number of preparations, modeling approaches and analysis techniques. Accordingly, this volume reflects the breadth and depth of current research in computational neuroscience taking place throughout the world.

Computational Neuroscience and Cognitive Modelling

Author : Britt Anderson
File Size : 40.10 MB
Format : PDF, ePub
Download : 171
Read : 1279
Download »
"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.

Computational Neuroscience of Drug Addiction

Author : Boris Gutkin
File Size : 39.62 MB
Format : PDF, Docs
Download : 256
Read : 305
Download »
Drug addiction remains one of the most important public health problems in western societies and is a rising concern for developing nations. Over the past 3 decades, experimental research on the neurobiology and psychology of drug addiction has generated a torrent of exciting data, from the molecular up to the behavioral levels. As a result, a new and pressing challenge for addiction research is to formulate a synthetic theoretical framework that goes well beyond mere scientific eclectism to deepen our understanding of drug addiction and to foster our capacity to prevent and to cure drug addiction. Intrigued by the apparent irrational behavior of drug addicts, researchers from a wide range of scientific disciplines have formulated a plethora of theoretical schemes over the years to understand addiction. However, most of these theories and models are qualitative in nature and are formulated using terms that are often ill-defined. As a result, the empirical validity of these models has been difficult to test rigorously, which has served to generate more controversy than clarity. In this context, as in other scientific fields, mathematical and computational modeling should contribute to the development of more testable and rigorous models of addiction.

Computational Neuroscience Cortical Dynamics

Author : Pťer 9Rdi
File Size : 88.23 MB
Format : PDF
Download : 210
Read : 848
Download »
This book presents thoroughly revised tutorial papers based on lectures given by leading researchers at the 8th International Summer School on Neural Networks in Erice, Italy, in October/November 2003. The eight tutorial papers presented provide competent coverage of the field of cortical dynamics, consolidating recent theoretical and experimental results on the processing, transmission, and imprinting of information in the brain as well as on important functions of the cortical area, such as cortical rhythms, cortical neural plasticity, and their structural basis and functional significance. The book is divided in two topical sections on fundamentals of cortical dynamics and mathematical models of cortical dynamics.

An Introductory Course in Computational Neuroscience

Author : Paul Miller
File Size : 88.3 MB
Format : PDF, ePub
Download : 711
Read : 836
Download »
A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

Principles of Computational Modelling in Neuroscience

Author : David Sterratt
File Size : 64.20 MB
Format : PDF
Download : 344
Read : 542
Download »
The nervous system is made up of a large number of interacting elements. To understand how such a complex system functions requires the construction and analysis of computational models at many different levels. This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signaling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modeling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience.

Encyclopedia of Computational Neuroscience

Author : Dieter Jaeger
File Size : 60.97 MB
Format : PDF, ePub
Download : 302
Read : 901
Download »
The annual Computational Neuroscience Meeting (CNS) began in 1990 as a small workshop called Analysis and Modeling of Neural Systems. The goal of the workshop was to explore the boundary between neuroscience and computation. Riding on the success of several seminal papers, physicists had made "Neural Networks" fashionable, and soon the quantitative methods used in these abstract model networks started permeating the methods and ideas of experimental neuroscientists. Although experimental neurophysiological approaches provided many advances, it became increasingly evident that mathematical and computational techniques would be required to achieve a comprehensive and quantitative understanding of neural system function. “Computational Neuroscience” emerged to complement experimental neurophysiology. The Encyclopedia of Computational Neuroscience, published in conjunction with the Organization for Computational Neuroscience, will be an extensive reference work consultable by both researchers and graduate level students. It will be a dynamic, living reference, updatable and containing linkouts and multimedia content whenever relevant.

Theoretical Neuroscience

Author : Mayte Bonilla Quintana
File Size : 87.5 MB
Format : PDF, ePub, Docs
Download : 849
Read : 309
Download »

Analysis of Parallel Spike Trains

Author : Sonja Grün
File Size : 76.70 MB
Format : PDF, Mobi
Download : 770
Read : 344
Download »
Solid and transparent data analysis is the most important basis for reliable interpretation of experiments. The technique of parallel spike train recordings using multi-electrode arrangements has been available for many decades now, but only recently gained wide popularity among electro physiologists. Many traditional analysis methods are based on firing rates obtained by trial-averaging, and some of the assumptions for such procedures to work can be ignored without serious consequences. The situation is different for correlation analysis, the result of which may be considerably distorted if certain critical assumptions are violated. The focus of this book is on concepts and methods of correlation analysis (synchrony, patterns, rate covariance), combined with a solid introduction into approaches for single spike trains, which represent the basis of correlations analysis. The book also emphasizes pitfalls and potential wrong interpretations of data due to violations of critical assumptions.