Search results for: the-nlp-toolkit

The NLP Practitioner A Practitioners Toolkit

Author : Toby and Kate McCartney
File Size : 69.92 MB
Format : PDF, Mobi
Download : 709
Read : 1283
Download »
Neuro Linguistic Programming (NLP) is the study of excellence and how we get outstanding results... It's an art and science designed for those who have a curiosity and an openness to learning more about the world we live in. NLP is not only a collection of effective tools and techniques, it is a process of replicating our conscious and unconscious patterns to get the right results that move us towards our desired successes. 'The NLP Practitioner' is a jargon free guide to NLP and is packed with step-by-step explanations and diagrams that untangle the mysteries of how to get outstanding results and success in your life. Whether you're a complete beginner, and avid student or an armchair expert, you'll find lots of food for thought in this book.

The NLP Toolkit

Author : Roger Terry
File Size : 80.11 MB
Format : PDF, Kindle
Download : 333
Read : 639
Download »
The NLP Toolkit is packed with easy to use tools, activities and techniques. Organised in an accessible way and grounded in teacher experience and practice, it provides a comprehensive toolkit that uses NLP techniques to improve all aspects of learning and teaching from using a simple spelling strategy to developing leadership skills. NLP is often described as 'the technology of emotional intelligence'. The NLP Toolkit gives you practical 'how to' ways to develop your own emotional resilience as well as ways to work with children in the area of emotional and social skills. The five sections cover: In the class activities Emotional and social literacy with children Stagecraft and presentation skills Personal development and effectiveness Leading with NLP The NLP Toolkit is the perfect companion to the highly acclaimed NLP for Teachers: How to be a highly effective teacher ISBN 9781845900632 and will be useful for both teachers with experience of NLP and those who are new to the subject.

Natural Language Processing with Python

Author : Steven Bird
File Size : 59.5 MB
Format : PDF, ePub, Docs
Download : 922
Read : 887
Download »
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Natural Language Processing

Author : Samuel Burns
File Size : 53.53 MB
Format : PDF, Mobi
Download : 945
Read : 717
Download »
Natural language processing (NLP) is about developing applications and services that are able to understand human languages. In this perfect Natural Language Processing Tutorial, we will use Python NLTK library. Natural language toolkit (NLTK) is the most popular library for natural language processing (NLP) which was written in Python and has a big community behind it. This is the Ultimate guide to learn Natural Language Processing (NLP) basics, such as how to identify and separate words, how to extract topics in a text. You dont need a big and a boring book to start today . Get Your Copy Now!!Book ObjectivesThe book objectives include the following: To help you appreciate big data as a great source of information and knowledge. To help you understand natural language processing. To help you know how to use natural language processing to extract knowledge and information from big data. To help you learn how to implement natural language processing solutions using NLTK (Natural Language Processing Toolkit) and other libraries in Python. Who this Book is for? Do you belong to any of the following categories? You are a complete beginner to natural language processing. You want to learn Python programming for natural language processing. You want to advance your skills in Python for natural language processing. Professors, lecturers or tutors who are looking to find better ways to explain Natural Language Processing to their students in the simplest and easiest way. Students and academicians, especially those focusing on python programming, Neural Networks, Machine Learning, Deep Learning, and Artificial Intelligence. If yes, this is the right book for you. What do you need for this Book? You only have to have installed Python 3.X on your computer. The author guides you on how to install the rest of the libraries on your computer. What is inside the book? GETTING STARTED WITH NATURAL LANGUAGE PROCESSING TEXT WRANGLING AND CLEANSING. REPLACING AND CORRECTING WORDS. TEXT CLASSIFICATION. SENTIMENT ANALYSIS. PARSING STRUCTURE IN TEXT. SOCIAL MEDIA MINING. NLTK FOR SENTIMENT ANALYSIS. SCIKIT-LEARN FOR TEXT CLASSIFICATION. WORK WITH PDF FILES IN PYTHON. WORK WITH TEXT FILES IN PYTHON. WORD2VEC ALGORITHM. NLP APPLICATIONS From the back cover.This comprehensive guide covers both statistical and symbolic approaches to Natural Language Processing. This is a good introduction to all the major topics of computational linguistics, which includes automatic speech recognition and processing, machine translation, information extraction, and statistical methods of linguistic analysis. Indeed, Natural Language Processing is the scientific discipline concerned with making the natural language accessible to machines, and it is a necessary means to facilitate text analytics by establishing structure in unstructured text to enable further analysis. This guide is a fundamental reference for any computational linguist, speech scientist or language data scientist. The explanations and illustrations in this short book are very intuitive and simple. The author helps you understand what natural language processing is. This is basically a theory touching on the fundamentals of natural language processing. The author then explains to you what the NLTK library is and what it does. The rest of the book is about implementing natural language processing tasks using the NLTK library in Python. Samuel Burns uses a combination of theory, Python code examples, and screenshots showing the expected outputs for various program codes.

The Development of Natural Language Processing

Author : China Info & Comm Tech Grp Corp
File Size : 85.69 MB
Format : PDF, Mobi
Download : 975
Read : 566
Download »
This book is a part of the Blue Book series “Research on the Development of Electronic Information Engineering Technology in China”, which explores the cutting edge of natural language processing (NLP) studies. The research objects of natural language processing are evolved from words, phrases, and sentences to text, and research directions are from language analysis, language understanding, language generation, knowledge graphs, machine translation, to deep semantic understanding, and beyond. This is in line with the development trend of applications. And for another typical NLP application machine translation, from text translation, to voice and image translation, now simultaneous interpretation, progress of technology makes the application of machine translation deeper and wider into diverse industries. This book is intended for researchers and industrial staffs who have been following the current situation and future trends of the natural language processing. Meanwhile, it also bears high value of reference for experts, scholars, and technical and engineering managers of different levels and different fields.

Advances in Information Technology and Communication in Health

Author : J.G. McDaniel
File Size : 36.79 MB
Format : PDF, ePub, Mobi
Download : 748
Read : 199
Download »
The topics of Advances in Information Technology and Communication in Health, the proceedings of ITCH 2009, include telemedicine and telehealth, electronic health records, software assurance and usability, terminology, classification and standards, software selection and evaluation, research and development initiatives, service administration, management and self-management, nation-wide Canadian initiatives, ethics, policy and government, decision support, artificial intelligence and modeling, software design and development, educational initiatives and professional development and technology adoption and evaluation. In March 1986, a Canadian colloquium with an international flavor was convened to discuss the impact of information technology on community health. It was sponsored by the School of Health Information Science at the University of Victoria and the British Columbia Ministry of Health. This small, successful gathering was the predecessor of the Information Technology in Community Health (ITCH) conferences that followed in 1987, 1988, 1990, 1992, 1994, 1996, 1998 and 2000. In 2007, after a brief hiatus, the conference was held again, but this time it had expanded its scope. It was known as Information Technology and Communications in Health (ITCH) 2007; with the same acronym but with a different meaning as demanded by its international appeal and wider choice of subject areas. The conference in 2007 was an unmatched success and for the conference of 2009, an even more eventful convention is expected, which encourages experts to demonstrate and share their experiences and knowledge. The theme for the ITCH 2009 conference is ‘Revolutionizing Health Care with Informatics: From Research to Practice’.

Evaluating Natural Language Processing Systems

Author : ren Sparck Jones
File Size : 33.11 MB
Format : PDF, Mobi
Download : 380
Read : 401
Download »
This book is about the patterns of connections between brain structures. It reviews progress on the analysis of neuroanatomical connection data and presents six different approaches to data analysis. The results of their application to data from cat and monkey cortex are explored. This volume sheds light on the organization of the brain that is specified by its wiring.

The NLP Coach

Author : Ian McDermott
File Size : 53.88 MB
Format : PDF, ePub
Download : 176
Read : 161
Download »
This is a comprehensive, practical and user-friendly guide to self-coaching using the powerful techniques of NLP (neuro-linguistic programming). The book provides a step-by-step programme to help you achieve success at work and at home. All the essential NLP coaching tools are clearly explained at the beginning of the book, with examples and case histories. The next six sections of the book show you how to coach yourself to success in six key aspects of your life. Enhance your self-esteem Build good relationships and improve your communication skills Maximise your brain power, accelerate your learning and improve your memory Generate health, wealth and happiness Manage yourself and others better and make your work more rewarding Reach your full potential and become spiritually alive

Natural Language Processing Fundamentals

Author : Sohom Ghosh
File Size : 44.66 MB
Format : PDF
Download : 278
Read : 876
Download »
Use Python and NLTK (Natural Language Toolkit) to build out your own text classifiers and solve common NLP problems. Key Features Assimilate key NLP concepts and terminologies Explore popular NLP tools and techniques Gain practical experience using NLP in application code Book Description If NLP hasn't been your forte, Natural Language Processing Fundamentals will make sure you set off to a steady start. This comprehensive guide will show you how to effectively use Python libraries and NLP concepts to solve various problems. You'll be introduced to natural language processing and its applications through examples and exercises. This will be followed by an introduction to the initial stages of solving a problem, which includes problem definition, getting text data, and preparing it for modeling. With exposure to concepts like advanced natural language processing algorithms and visualization techniques, you'll learn how to create applications that can extract information from unstructured data and present it as impactful visuals. Although you will continue to learn NLP-based techniques, the focus will gradually shift to developing useful applications. In these sections, you'll understand how to apply NLP techniques to answer questions as can be used in chatbots. By the end of this book, you'll be able to accomplish a varied range of assignments ranging from identifying the most suitable type of NLP task for solving a problem to using a tool like spacy or gensim for performing sentiment analysis. The book will easily equip you with the knowledge you need to build applications that interpret human language. What you will learn Obtain, verify, and clean data before transforming it into a correct format for use Perform data analysis and machine learning tasks using Python Understand the basics of computational linguistics Build models for general natural language processing tasks Evaluate the performance of a model with the right metrics Visualize, quantify, and perform exploratory analysis from any text data Who this book is for Natural Language Processing Fundamentals is designed for novice and mid-level data scientists and machine learning developers who want to gather and analyze text data to build an NLP-powered product. It'll help you to have prior experience of coding in Python using data types, writing functions, and importing libraries. Some experience with linguistics and probability is useful but not necessary.

Natural Language Processing Python and NLTK

Author : Nitin Hardeniya
File Size : 21.41 MB
Format : PDF, ePub, Docs
Download : 202
Read : 773
Download »
Learn to build expert NLP and machine learning projects using NLTK and other Python libraries About This Book Break text down into its component parts for spelling correction, feature extraction, and phrase transformation Work through NLP concepts with simple and easy-to-follow programming recipes Gain insights into the current and budding research topics of NLP Who This Book Is For If you are an NLP or machine learning enthusiast and an intermediate Python programmer who wants to quickly master NLTK for natural language processing, then this Learning Path will do you a lot of good. Students of linguistics and semantic/sentiment analysis professionals will find it invaluable. What You Will Learn The scope of natural language complexity and how they are processed by machines Clean and wrangle text using tokenization and chunking to help you process data better Tokenize text into sentences and sentences into words Classify text and perform sentiment analysis Implement string matching algorithms and normalization techniques Understand and implement the concepts of information retrieval and text summarization Find out how to implement various NLP tasks in Python In Detail Natural Language Processing is a field of computational linguistics and artificial intelligence that deals with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning. The number of human-computer interaction instances are increasing so it's becoming imperative that computers comprehend all major natural languages. The first NLTK Essentials module is an introduction on how to build systems around NLP, with a focus on how to create a customized tokenizer and parser from scratch. You will learn essential concepts of NLP, be given practical insight into open source tool and libraries available in Python, shown how to analyze social media sites, and be given tools to deal with large scale text. This module also provides a workaround using some of the amazing capabilities of Python libraries such as NLTK, scikit-learn, pandas, and NumPy. The second Python 3 Text Processing with NLTK 3 Cookbook module teaches you the essential techniques of text and language processing with simple, straightforward examples. This includes organizing text corpora, creating your own custom corpus, text classification with a focus on sentiment analysis, and distributed text processing methods. The third Mastering Natural Language Processing with Python module will help you become an expert and assist you in creating your own NLP projects using NLTK. You will be guided through model development with machine learning tools, shown how to create training data, and given insight into the best practices for designing and building NLP-based applications using Python. This Learning Path combines some of the best that Packt has to offer in one complete, curated package and is designed to help you quickly learn text processing with Python and NLTK. It includes content from the following Packt products: NTLK essentials by Nitin Hardeniya Python 3 Text Processing with NLTK 3 Cookbook by Jacob Perkins Mastering Natural Language Processing with Python by Deepti Chopra, Nisheeth Joshi, and Iti Mathur Style and approach This comprehensive course creates a smooth learning path that teaches you how to get started with Natural Language Processing using Python and NLTK. You'll learn to create effective NLP and machine learning projects using Python and NLTK.

Natural Language Processing for Historical Texts

Author : Michael Piotrowski
File Size : 56.36 MB
Format : PDF, ePub, Docs
Download : 573
Read : 1251
Download »
More and more historical texts are becoming available in digital form. Digitization of paper documents is motivated by the aim of preserving cultural heritage and making it more accessible, both to laypeople and scholars. As digital images cannot be searched for text, digitization projects increasingly strive to create digital text, which can be searched and otherwise automatically processed, in addition to facsimiles. Indeed, the emerging field of digital humanities heavily relies on the availability of digital text for its studies. Together with the increasing availability of historical texts in digital form, there is a growing interest in applying natural language processing (NLP) methods and tools to historical texts. However, the specific linguistic properties of historical texts -- the lack of standardized orthography, in particular -- pose special challenges for NLP. This book aims to give an introduction to NLP for historical texts and an overview of the state of the art in this field. The book starts with an overview of methods for the acquisition of historical texts (scanning and OCR), discusses text encoding and annotation schemes, and presents examples of corpora of historical texts in a variety of languages. The book then discusses specific methods, such as creating part-of-speech taggers for historical languages or handling spelling variation. A final chapter analyzes the relationship between NLP and the digital humanities. Certain recently emerging textual genres, such as SMS, social media, and chat messages, or newsgroup and forum postings share a number of properties with historical texts, for example, nonstandard orthography and grammar, and profuse use of abbreviations. The methods and techniques required for the effective processing of historical texts are thus also of interest for research in other domains. Table of Contents: Introduction / NLP and Digital Humanities / Spelling in Historical Texts / Acquiring Historical Texts / Text Encoding and Annotation Schemes / Handling Spelling Variation / NLP Tools for Historical Languages / Historical Corpora / Conclusion / Bibliography

Artificial Intelligence Concepts Methodologies Tools and Applications

Author : Management Association, Information Resources
File Size : 38.94 MB
Format : PDF, Docs
Download : 992
Read : 692
Download »
Ongoing advancements in modern technology have led to significant developments in artificial intelligence. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Artificial Intelligence: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of the latest breakthroughs and recent progress in artificial intelligence. Highlighting relevant technologies, uses, and techniques across various industries and settings, this publication is a pivotal reference source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of artificial intelligence.

Natural Language Processing NLP Using Python

Author : Abhishek Chhibber
File Size : 79.38 MB
Format : PDF, Kindle
Download : 856
Read : 506
Download »
"This series will provide an overview and working knowledge of Natural Language Processing (NLP), using Python's Natural Language Toolkit (NLTK) library within an Anaconda environment. It is intended for users who have basic programming knowledge of Python and want to start with NLP."--Resource description page.

Natural Language Understanding in a Semantic Web Context

Author : Caroline Barrière
File Size : 26.22 MB
Format : PDF, ePub, Docs
Download : 911
Read : 807
Download »
This book serves as a starting point for Semantic Web (SW) students and researchers interested in discovering what Natural Language Processing (NLP) has to offer. NLP can effectively help uncover the large portions of data held as unstructured text in natural language, thus augmenting the real content of the Semantic Web in a significant and lasting way. The book covers the basics of NLP, with a focus on Natural Language Understanding (NLU), referring to semantic processing, information extraction and knowledge acquisition, which are seen as the key links between the SW and NLP communities. Major emphasis is placed on mining sentences in search of entities and relations. In the course of this “quest", challenges will be encountered for various text analysis tasks, including part-of-speech tagging, parsing, semantic disambiguation, named entity recognition and relation extraction. Standard algorithms associated with these tasks are presented to provide an understanding of the fundamental concepts. Furthermore, the importance of experimental design and result analysis is emphasized, and accordingly, most chapters include small experiments on corpus data with quantitative and qualitative analysis of the results. This book is divided into four parts. Part I “Searching for Entities in Text” is dedicated to the search for entities in textual data. Next, Part II “Working with Corpora” investigates corpora as valuable resources for NLP work. In turn, Part III “Semantic Grounding and Relatedness” focuses on the process of linking surface forms found in text to entities in resources. Finally, Part IV “Knowledge Acquisition” delves into the world of relations and relation extraction. The book also includes three appendices: “A Look into the Semantic Web” gives a brief overview of the Semantic Web and is intended to bring readers less familiar with the Semantic Web up to speed, so that they too can fully benefit from the material of this book. “NLP Tools and Platforms” provides information about NLP platforms and tools, while “Relation Lists” gathers lists of relations under different categories, showing how relations can be varied and serve different purposes. And finally, the book includes a glossary of over 200 terms commonly used in NLP. The book offers a valuable resource for graduate students specializing in SW technologies and professionals looking for new tools to improve the applicability of SW techniques in everyday life – or, in short, everyone looking to learn about NLP in order to expand his or her horizons. It provides a wealth of information for readers new to both fields, helping them understand the underlying principles and the challenges they may encounter.

A Beginner s Guide to Learning Analytics

Author : Srinivasa K G
File Size : 75.27 MB
Format : PDF, Kindle
Download : 174
Read : 518
Download »
This book A Beginner’s Guide to Learning Analytics is designed to meet modern educational trends’ needs. It is addressed to readers who have no prior knowledge of learning analytics and functions as an introductory text to learning analytics for those who want to do more with evaluation/assessment in their organizations. The book is useful to all who need to evaluate their learning and teaching strategies. It aims to bring greater efficiency and deeper engagement to individual students, learning communities, and educators. Covered here are the key concepts linked to learning analytics for researchers and practitioners interested in learning analytics. This book helps those who want to apply analytics to learning and development programs and helps educational institutions to identify learners who require support and provide a more personalized learning experience. Like chapters show diverse uses of learning analytics to enhance student and faculty performance. It presents a coherent framework for the effective translation of learning analytics research for educational practice to its practical application in different educational domains. This book provides educators and researchers with the tools and frameworks to effectively make sense of and use data and analytics in their everyday practice. This book will be a valuable addition to researchers’ bookshelves.

Enhanced Living Environments

Author : Ivan Ganchev
File Size : 24.40 MB
Format : PDF, Mobi
Download : 352
Read : 903
Download »
This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area.

Natural Language Processing with Java and LingPipe Cookbook

Author : Breck Baldwin
File Size : 69.94 MB
Format : PDF, ePub
Download : 186
Read : 1105
Download »
This book is for experienced Java developers with NLP needs, whether academics, industrialists, or hobbyists. A basic knowledge of NLP terminology will be beneficial.

Natural Language Processing for Social Media

Author : Anna Atefeh Farzindar
File Size : 42.14 MB
Format : PDF, ePub, Mobi
Download : 287
Read : 409
Download »
In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts, and it shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, and business intelligence. The book further covers the existing evaluation metrics for NLP and social media applications and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks), the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC), or the Conference and Labs of the Evaluation Forum (CLEF). In this third edition of the book, the authors added information about recent progress in NLP for social media applications, including more about the modern techniques provided by deep neural networks (DNNs) for modeling language and analyzing social media data.

Natural Language Processing for Social Media

Author : Atefeh Farzindar
File Size : 57.31 MB
Format : PDF, ePub
Download : 450
Read : 316
Download »
In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms which extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. We discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts (big data), and shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, healthcare, business intelligence, industry, marketing, and security and defence. We review the existing evaluation metrics for NLP and social media applications, and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks) or by the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC). In the concluding chapter, we discuss the importance of this dynamic discipline and its great potential for NLP in the coming decade, in the context of changes in mobile technology, cloud computing, virtual reality, and social networking. In this second edition, we have added information about recent progress in the tasks and applications presented in the first edition. We discuss new methods and their results. The number of research projects and publications that use social media data is constantly increasing due to continuously growing amounts of social media data and the need to automatically process them. We have added 85 new references to the more than 300 references from the first edition. Besides updating each section, we have added a new application (digital marketing) to the section on media monitoring and we have augmented the section on healthcare applications with an extended discussion of recent research on detecting signs of mental illness from social media.

Natural Language Processing and Computational Linguistics

Author : Mohamed Zakaria Kurdi
File Size : 65.97 MB
Format : PDF
Download : 696
Read : 313
Download »
Natural language processing (NLP) is a scientific discipline which is found at the interface of computer science, artificial intelligence and cognitive psychology. Providing an overview of international work in this interdisciplinary field, this book gives the reader a panoramic view of both early and current research in NLP. Carefully chosen multilingual examples present the state of the art of a mature field which is in a constant state of evolution. In four chapters, this book presents the fundamental concepts of phonetics and phonology and the two most important applications in the field of speech processing: recognition and synthesis. Also presented are the fundamental concepts of corpus linguistics and the basic concepts of morphology and its NLP applications such as stemming and part of speech tagging. The fundamental notions and the most important syntactic theories are presented, as well as the different approaches to syntactic parsing with reference to cognitive models, algorithms and computer applications.