Sturm-Liouville Theory and its Applications

DOWNLOAD NOW »

Author: Mohammed Al-Gwaiz

Publisher: Springer Science & Business Media

ISBN: 1846289718

Category: Mathematics

Page: 264

View: 1082

Developed from a course taught to senior undergraduates, this book provides a unified introduction to Fourier analysis and special functions based on the Sturm-Liouville theory in L2. The text’s presentation follows a clear, rigorous mathematical style that is highly readable. The author first establishes the basic results of Sturm-Liouville theory and then provides examples and applications to illustrate the theory. The final two chapters, on Fourier and Laplace transformations, demonstrate the use of the Fourier series method for representing functions to integral representations.

Multiparameter Eigenvalue Problems

Sturm-Liouville Theory

DOWNLOAD NOW »

Author: F.V. Atkinson,Angelo B. Mingarelli

Publisher: CRC Press

ISBN: 1439816239

Category: Mathematics

Page: 301

View: 5647

One of the masters in the differential equations community, the late F.V. Atkinson contributed seminal research to multiparameter spectral theory and Sturm-Liouville theory. His ideas and techniques have long inspired researchers and continue to stimulate discussion. With the help of co-author Angelo B. Mingarelli, Multiparameter Eigenvalue Problems: Sturm-Liouville Theory reflects much of Dr. Atkinson’s final work. After covering standard multiparameter problems, the book investigates the conditions for eigenvalues to be real and form a discrete set. It gives results on the determinants of functions, presents oscillation methods for Sturm-Liouville systems and other multiparameter systems, and offers an alternative approach to multiparameter Sturm-Liouville problems in the case of two equations and two parameters. In addition to discussing the distribution of eigenvalues and infinite limit-points of the set of eigenvalues, the text focuses on proofs of the completeness of the eigenfunctions of a multiparameter Sturm-Liouville problem involving finite intervals. It also explores the limit-point, limit-circle classification as well as eigenfunction expansions. A lasting tribute to Dr. Atkinson’s contributions that spanned more than 40 years, this book covers the full multiparameter theory as applied to second-order linear equations. It considers the spectral theory of multiparameter problems in detail for both regular and singular cases.

Sturm-Liouville Problems

Theory and Numerical Implementation

DOWNLOAD NOW »

Author: Ronald B. Guenther,John W Lee

Publisher: CRC Press

ISBN: 0429795351

Category: Mathematics

Page: 406

View: 9909

Sturm-Liouville problems arise naturally in solving technical problems in engineering, physics, and more recently in biology and the social sciences. These problems lead to eigenvalue problems for ordinary and partial differential equations. Sturm-Liouville Problems: Theory and Numerical Implementation addresses, in a unified way, the key issues that must be faced in science and engineering applications when separation of variables, variational methods, or other considerations lead to Sturm-Liouville eigenvalue problems and boundary value problems.

Ordinary and Partial Differential Equations

With Special Functions, Fourier Series, and Boundary Value Problems

DOWNLOAD NOW »

Author: Ravi P. Agarwal,Donal O'Regan

Publisher: Springer Science & Business Media

ISBN: 0387791469

Category: Mathematics

Page: 410

View: 6494

In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.

Theory of a Higher-Order Sturm-Liouville Equation

DOWNLOAD NOW »

Author: Vladimir Kozlov,Vladimir Maz'ya

Publisher: Springer

ISBN: 3540691227

Category: Mathematics

Page: 144

View: 1559

This book develops a detailed theory of a generalized Sturm-Liouville Equation, which includes conditions of solvability, classes of uniqueness, positivity properties of solutions and Green's functions, asymptotic properties of solutions at infinity. Of independent interest, the higher-order Sturm-Liouville equation also proved to have important applications to differential equations with operator coefficients and elliptic boundary value problems for domains with non-smooth boundaries. The book addresses graduate students and researchers in ordinary and partial differential equations, and is accessible with a standard undergraduate course in real analysis.

Applied Partial Differential Equations

DOWNLOAD NOW »

Author: J. David Logan

Publisher: Springer Science & Business Media

ISBN: 9780387209357

Category: Mathematics

Page: 209

View: 6829

"This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation, epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of the exercises will have a sound knowledge base for upper division mathematics, science, and engineering courses where detailed models and applications are introduced."--BOOK JACKET.

Hermitian Analysis

From Fourier Series to Cauchy-Riemann Geometry

DOWNLOAD NOW »

Author: John P. D'Angelo

Publisher: Springer Science & Business Media

ISBN: 1461485266

Category: Mathematics

Page: 203

View: 6085

​​Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry provides a coherent, integrated look at various topics from undergraduate analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book, geometric considerations. This chapter includes complex differential forms, geometric inequalities from one and several complex variables, and includes some of the author's results. The concept of orthogonality weaves the material into a coherent whole. This textbook will be a useful resource for upper-undergraduate students who intend to continue with mathematics, graduate students interested in analysis, and researchers interested in some basic aspects of CR Geometry. The inclusion of several hundred exercises makes this book suitable for a capstone undergraduate Honors class.​

Mathematical Physics

A Modern Introduction to Its Foundations

DOWNLOAD NOW »

Author: Sadri Hassani

Publisher: Springer Science & Business Media

ISBN: 3319011952

Category: Science

Page: 1205

View: 4592

The goal of this book is to expose the reader to the indispensable role that mathematics plays in modern physics. Starting with the notion of vector spaces, the first half of the book develops topics as diverse as algebras, classical orthogonal polynomials, Fourier analysis, complex analysis, differential and integral equations, operator theory, and multi-dimensional Green's functions. The second half of the book introduces groups, manifolds, Lie groups and their representations, Clifford algebras and their representations, and fibre bundles and their applications to differential geometry and gauge theories. This second edition is a substantial revision with a complete rewriting of many chapters and the addition of new ones, including chapters on algebras, representation of Clifford algebras, fibre bundles, and gauge theories. The spirit of the first edition, namely the balance between rigour and physical application, has been maintained, as is the abundance of historical notes and worked out examples that demonstrate the "unreasonable effectiveness of mathematics" in modern physics.