Search results for: stochastic-two-stage-programming

Stochastic Two Stage Programming

Author : Karl Frauendorfer
File Size : 87.53 MB
Format : PDF, ePub
Download : 535
Read : 731
Download »
Stochastic Programming offers models and methods for decision problems wheresome of the data are uncertain. These models have features and structural properties which are preferably exploited by SP methods within the solution process. This work contributes to the methodology for two-stagemodels. In these models the objective function is given as an integral, whose integrand depends on a random vector, on its probability measure and on a decision. The main results of this work have been derived with the intention to ease these difficulties: After investigating duality relations for convex optimization problems with supply/demand and prices being treated as parameters, a stability criterion is stated and proves subdifferentiability of the value function. This criterion is employed for proving the existence of bilinear functions, which minorize/majorize the integrand. Additionally, these minorants/majorants support the integrand on generalized barycenters of simplicial faces of specially shaped polytopes and amount to an approach which is denoted barycentric approximation scheme.

Electrical Power Unit Commitment

Author : Yuping Huang
File Size : 81.69 MB
Format : PDF, ePub, Mobi
Download : 999
Read : 415
Download »
This volume in the SpringerBriefs in Energy series offers a systematic review of unit commitment (UC) problems in electrical power generation. It updates texts written in the late 1990s and early 2000s by including the fundamentals of both UC and state-of-the-art modeling as well as solution algorithms and highlighting stochastic models and mixed-integer programming techniques. The UC problems are mostly formulated as mixed-integer linear programs, although there are many variants. A number of algorithms have been developed for, or applied to, UC problems, including dynamic programming, Lagrangian relaxation, general mixed-integer programming algorithms, and Benders decomposition. In addition the book discusses the recent trends in solving UC problems, especially stochastic programming models, and advanced techniques to handle large numbers of integer- decision variables due to scenario propagation

Decision Making with Dominance Constraints in Two Stage Stochastic Integer Programming

Author : Uwe Gotzes
File Size : 37.79 MB
Format : PDF, Kindle
Download : 821
Read : 422
Download »
Uwe Gotzes analyzes an approach to account for risk aversion in two-stage models based upon partial orders on the set of real random variables. He illustrates the superiority of the proposed decomposition method over standard solvers for example with numerical experiments with instances from energy investment.

Applications of Stochastic Programming

Author : Stein W. Wallace
File Size : 22.92 MB
Format : PDF, Kindle
Download : 192
Read : 976
Download »
Consisting of two parts, this book presents papers describing publicly available stochastic programming systems that are operational. It presents a diverse collection of application papers in areas such as production, supply chain and scheduling, gaming, environmental and pollution control, financial modeling, telecommunications, and electricity.

Stochastic Linear Programming

Author : P. Kall
File Size : 33.44 MB
Format : PDF, Kindle
Download : 751
Read : 1274
Download »
Todaymanyeconomists, engineers and mathematicians are familiar with linear programming and are able to apply it. This is owing to the following facts: during the last 25 years efficient methods have been developed; at the same time sufficient computer capacity became available; finally, in many different fields, linear programs have turned out to be appropriate models for solving practical problems. However, to apply the theory and the methods of linear programming, it is required that the data determining a linear program be fixed known numbers. This condition is not fulfilled in many practical situations, e. g. when the data are demands, technological coefficients, available capacities, cost rates and so on. It may happen that such data are random variables. In this case, it seems to be common practice to replace these random variables by their mean values and solve the resulting linear program. By 1960 various authors had already recog nized that this approach is unsound: between 1955 and 1960 there were such papers as "Linear Programming under Uncertainty", "Stochastic Linear Pro gramming with Applications to Agricultural Economics", "Chance Constrained Programming", "Inequalities for Stochastic Linear Programming Problems" and "An Approach to Linear Programming under Uncertainty".

Lectures on Stochastic Programming

Author : Alexander Shapiro
File Size : 62.7 MB
Format : PDF, ePub, Docs
Download : 282
Read : 1038
Download »
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available.÷ In÷Lectures on Stochastic Programming: Modeling and Theory, Second Edition, the authors introduce new material to reflect recent developments in stochastic programming, including: an analytical description of the tangent and normal cones of chance constrained sets; analysis of optimality conditions applied to nonconvex problems; a discussion of the stochastic dual dynamic programming method; an extended discussion of law invariant coherent risk measures and their Kusuoka representations; and in-depth analysis of dynamic risk measures and concepts of time consistency, including several new results.÷

Adapting an Approximate Level Method to the Two stage Stochastic Programming Problem

Author : Csaba I. Fábián
File Size : 69.41 MB
Format : PDF, Docs
Download : 608
Read : 1000
Download »

Stochastic Programming

Author : V.V. Kolbin
File Size : 75.38 MB
Format : PDF, Kindle
Download : 371
Read : 858
Download »
This book is devoted to the problems of stochastic (or probabilistic) programming. The author took as his basis the specialized lectures which he delivered to the graduates from the economic cybernetics department of Leningrad University beginning in 1967. Since 1971 the author has delivered a specialized course on Stochastic Programming to the gradu ates from the faculty of applied mathematics/management processes at Leningrad University. The present monograph consists of seven chapters. In Chapter I, which is of an introductory character, consideration is given to the problems of uncertainty and probability, used for modelling complicated systems. Fundamental indications for the classification of stochastic pro gramming problems are given. Chapter II is devoted to the analysis of various models of chance-constrained stochastic programming problems. Examples of technological and applied economic problems of management with chance-constraints are given. In Chapter III two-stage stochastic programming problems are investigated, various models are given, and these models are qualitatively analyzed. In the conclusion of the chapter consideration is given to: the transport problem with random data, the problem of the determination of production volume, and the problem of planning the flights of aircraft as two-stage stochastic programming problems. Multi-stage stochastic programming problems are investigated in Chapter IV. The dependencies between prior and posterior decision rules and decision distributions are given. Dual problems are investigated.

Risk Measures with Preselected Tolerance Levels in Two stage Stochastic Mixed integer Programming

Author : Stephan Tiedemann
File Size : 66.35 MB
Format : PDF, ePub, Mobi
Download : 598
Read : 534
Download »

Stochastic Programming

Author : Horand Gassmann
File Size : 32.38 MB
Format : PDF, Docs
Download : 155
Read : 855
Download »
This book shows the breadth and depth of stochastic programming applications. All the papers presented here involve optimization over the scenarios that represent possible future outcomes of the uncertainty problems. The applications, which were presented at the 12th International Conference on Stochastic Programming held in Halifax, Nova Scotia in August 2010, span the rich field of uses of these models. The finance papers discuss such diverse problems as longevity risk management of individual investors, personal financial planning, intertemporal surplus management, asset management with benchmarks, dynamic portfolio management, fixed income immunization and racetrack betting. The production and logistics papers discuss natural gas infrastructure design, farming Atlantic salmon, prevention of nuclear smuggling and sawmill planning. The energy papers involve electricity production planning, hydroelectric reservoir operations and power generation planning for liquid natural gas plants. Finally, two telecommunication papers discuss mobile network design and frequency assignment problems.

Risk Management in Stochastic Integer Programming

Author : Frederike Neise
File Size : 52.84 MB
Format : PDF, Kindle
Download : 872
Read : 1231
Download »
The author presents two concepts to handle the classic linear mixed-integer two-stage stochastic optimization problem. She describes mean-risk modeling and stochastic programming with first order dominance constraints. Both approaches are applied to optimize the operation of a dispersed generation system.

Introduction to Stochastic Programming

Author : John R. Birge
File Size : 29.85 MB
Format : PDF, Mobi
Download : 647
Read : 628
Download »
This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.

Structure and Stability in Two stage Stochastic Programming

Author : Rüdiger Schultz
File Size : 37.30 MB
Format : PDF, ePub, Docs
Download : 254
Read : 511
Download »

A Survey on Linear Two stage Stochastic Programming

Author : Martin Jørgensen
File Size : 58.7 MB
Format : PDF, Kindle
Download : 369
Read : 355
Download »

Stochastic Decomposition

Author : Julia L. Higle
File Size : 26.89 MB
Format : PDF
Download : 153
Read : 659
Download »
Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.

A Reduced Gradient Based Procedure for Two stage Stochastic Linear Programming

Author : Alexander E. Pound
File Size : 80.39 MB
Format : PDF, ePub, Mobi
Download : 778
Read : 1206
Download »

Strong Convexity in Two stage Stochastic Programming with Complete Linear Recourse and Risk Aversion

Author : Kai Arne Spürkel
File Size : 89.62 MB
Format : PDF, ePub, Mobi
Download : 776
Read : 542
Download »

Decomposition Algorithms for Two stage Stochastic Integer Programming

Author : John H. Penuel
File Size : 46.70 MB
Format : PDF, Mobi
Download : 249
Read : 473
Download »
ABSTRACT: Stochastic programming seeks to optimize decision making in uncertain conditions. This type of work is typically amenable to decomposition into first- and second-stage decisions. First-stage decisions must be made now, while second-stage decisions are made after realizing certain future conditions and are typically constrained by first-stage decisions. This work focuses on two stochastic integer programming applications. In Chapter 2, we investigate a two-stage facility location problem with integer recourse. In Chapter 3, we investigate the graph decontamination problem with mobile agents. In both problems, we develop cutting-plane algorithms that iteratively solve the first-stage problem, then solve the second-stage problem and glean information from the second-stage solution with which we refine first-stage decisions. This process is repeated until optimality is reached. If the second-stage problems are linear programs, then duality can be exploited in order to refine first-stage decisions. If the second-stage problems are mixed-integer programs, then we resort to other methods to extract information from the second-stage problem. The applications discussed in this work have mixed-integer second-stage problems, and accordingly we develop specialized cutting-plane algorithms and demonstrate the efficacy of our solution methods.

Quasi Monte Carlo Methods for Linear Two stage Stochastic Programming Problems

Author : Hernan Leövey
File Size : 45.27 MB
Format : PDF, ePub
Download : 868
Read : 932
Download »

Stochastic Programming

Author : Gerd Infanger
File Size : 82.56 MB
Format : PDF, ePub
Download : 878
Read : 682
Download »
From the Preface... The preparation of this book started in 2004, when George B. Dantzig and I, following a long-standing invitation by Fred Hillier to contribute a volume to his International Series in Operations Research and Management Science, decided finally to go ahead with editing a volume on stochastic programming. The field of stochastic programming (also referred to as optimization under uncertainty or planning under uncertainty) had advanced significantly in the last two decades, both theoretically and in practice. George Dantzig and I felt that it would be valuable to showcase some of these advances and to present what one might call the state-of- the-art of the field to a broader audience. We invited researchers whom we considered to be leading experts in various specialties of the field, including a few representatives of promising developments in the making, to write a chapter for the volume. Unfortunately, to the great loss of all of us, George Dantzig passed away on May 13, 2005. Encouraged by many colleagues, I decided to continue with the book and edit it as a volume dedicated to George Dantzig. Management Science published in 2005 a special volume featuring the “Ten most Influential Papers of the first 50 Years of Management Science.” George Dantzig’s original 1955 stochastic programming paper, “Linear Programming under Uncertainty,” was featured among these ten. Hearing about this, George Dantzig suggested that his 1955 paper be the first chapter of this book. The vision expressed in that paper gives an important scientific and historical perspective to the book. Gerd Infanger