Search results for: practical-stress-analysis-with-finite-elements

Practical Stress Analysis with Finite Elements

Author : Bryan J. Mac Donald
File Size : 45.94 MB
Format : PDF, Kindle
Download : 360
Read : 783
Download »
Practical Stress Analysis with Finite Elements is an ideal introductory text for newcomers to finite element analysis who wish to learn how to use FEA. Unlike many other books which claim to be at an introductory level, this book does not weigh the reader down with theory but rather provides the minimum amount of theory needed to understand how to practically perform an analysis using a finite element analysis software package. Newcomers to FEA generally want to learn how to apply FEA to their particular problem and consequently the emphasis of this book is on practical FE procedures. The information in this book is an invaluable guide and reference for both undergraduate and postgraduate engineering students and for practising engineers. * Emphasises practical finite element analysis with commercially available finite element software packages. * Presented in a generic format that is not specific to any particular finite element software but clearly shows the methodology required for successful FEA. * Focused entirely on structural stress analysis. * Offers specific advice on the type of element to use, the best material model to use, the type of analysis to use and which type of results to look for. * Provides specific, no nonsense advice on how to fix problems in the analysis. * Contains over 300 illustrations * Provides 9 detailed case studies which specifically show you how to perform various types of analyses. Are you tired of picking up a book that claims to be on "practical" finite element analysis only to find that it is full of the same old theory rehashed and contains no advice to help you plan your analysis? If so then this book is for you! The emphasis of this book is ondoing FEA, not writing a FE code. A method is provided to help you plan your analysis, a chapter is devoted to each choice you have to make when building your model giving you clear and specific advice. Finally nine case studies are provided which illustrate the points made in the main text and take you slowely through your first finite element analyses. The book is written in such a way that it is not specific to any particular FE software so it doesn't matter which FE software you use, this book can help you!

Practical Stress Analysis with Finite Elements

Author : Bryan J. Mac Donald
File Size : 21.87 MB
Format : PDF
Download : 593
Read : 1245
Download »
Practical Stress Analysis with Finite Elements is an ideal introductory text for newcomers to finite element analysis who wish to learn how to use FEA. Unlike many other books which claim to be at an introductory level, this book does not weigh the reader down with theory but rather provides the minimum amount of theory needed to understand how to practically perform an analysis using a finite element analysis software package. Newcomers to FEA generally want to learn how to apply FEA to their particular problem and consequently the emphasis of this book is on practical FE procedures. The information in this book is an invaluable guide and reference for both undergraduate and postgraduate engineering students and for practising engineers.

Practical Finite Element Analysis

Author : Nitin S. Gokhale
File Size : 21.72 MB
Format : PDF, Mobi
Download : 644
Read : 826
Download »
Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.

Practical Application of Finite Element Analysis to Aircraft Structural Design

Author :
File Size : 71.74 MB
Format : PDF, ePub, Mobi
Download : 260
Read : 971
Download »

Structural Analysis with Finite Elements

Author : Friedel Hartmann
File Size : 49.23 MB
Format : PDF, Kindle
Download : 195
Read : 273
Download »
This book provides a solid introduction to the foundation and the application of the finite element method in structural analysis. It offers new theoretical insight and practical advice. This second edition contains additional sections on sensitivity analysis, on retrofitting structures, on the Generalized FEM (X-FEM) and on model adaptivity. An additional chapter treats the boundary element method, and related software is available at www.winfem.de.

Fundamentals of Finite Element Analysis

Author : Ioannis Koutromanos
File Size : 64.31 MB
Format : PDF
Download : 665
Read : 316
Download »
An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.

Practical Stress Analysis in Engineering Design Third Edition

Author : Ronald Huston
File Size : 76.10 MB
Format : PDF, ePub, Docs
Download : 268
Read : 465
Download »
Updated and revised, this book presents the application of engineering design and analysis based on the approach of understanding the physical characteristics of a given problem and then modeling the important aspects of the physical system. This third edition provides coverage of new topics including contact stress analysis, singularity functions, gear stresses, fasteners, shafts, and shaft stresses. It introduces finite element methods as well as boundary element methods and also features worked examples, problems, and a section on the finite difference method and applications. This text is suitable for undergraduate and graduate students in mechanical, civil, and aerospace engineering.

A First Course in the Finite Element Method SI Edition

Author : Daryl L. Logan
File Size : 38.12 MB
Format : PDF, ePub, Mobi
Download : 261
Read : 1191
Download »
Discover a simple, direct approach that highlights the basics you need within A FIRST COURSE IN THE FINITE ELEMENT METHOD, 6E. This unique book is written so both undergraduate and graduate readers can easily comprehend the content without the usual prerequisites, such as structural analysis. The book is written primarily as a basic learning tool for those studying civil and mechanical engineering who are primarily interested in stress analysis and heat transfer. The text offers ideal preparation for utilizing the finite element method as a tool to solve practical physical problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Finite Element Method

Author : G.R. Liu
File Size : 75.54 MB
Format : PDF, ePub, Mobi
Download : 321
Read : 528
Download »
The Finite Element Method (FEM) has become an indispensable technology for the modelling and simulation of engineering systems. Written for engineers and students alike, the aim of the book is to provide the necessary theories and techniques of the FEM for readers to be able to use a commercial FEM package to solve primarily linear problems in mechanical and civil engineering with the main focus on structural mechanics and heat transfer. Fundamental theories are introduced in a straightforward way, and state-of-the-art techniques for designing and analyzing engineering systems, including microstructural systems are explained in detail. Case studies are used to demonstrate these theories, methods, techniques and practical applications, and numerous diagrams and tables are used throughout. The case studies and examples use the commercial software package ABAQUS, but the techniques explained are equally applicable for readers using other applications including NASTRAN, ANSYS, MARC, etc. A practical and accessible guide to this complex, yet important subject Covers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality

Introduction to Finite Element Analysis Using SOLIDWORKS Simulation 2018

Author : Randy Shih
File Size : 71.32 MB
Format : PDF, Kindle
Download : 784
Read : 987
Download »
The primary goal of Introduction to Finite Element Analysis Using SOLIDWORKS Simulation 2018 is to introduce the aspects of Finite Element Analysis (FEA) that are important to engineers and designers. Theoretical aspects of FEA are also introduced as they are needed to help better understand the operation. The primary emphasis of the text is placed on the practical concepts and procedures needed to use SOLIDWORKS Simulation in performing Linear Static Stress Analysis and basic Modal Analysis. This text covers SOLIDWORKS Simulation and the lessons proceed in a pedagogical fashion to guide you from constructing basic truss elements to generating three-dimensional solid elements from solid models. This text takes a hands-on, exercise-intensive approach to all the important FEA techniques and concepts. This textbook contains a series of fourteen tutorial style lessons designed to introduce beginning FEA users to SOLIDWORKS Simulation. The basic premise of this book is that the more designs you create using SOLIDWORKS Simulation, the better you learn the software. With this in mind, each lesson introduces a new set of commands and concepts, building on previous lessons.

Finite Element Analysis Applications

Author : Zhuming Bi
File Size : 85.23 MB
Format : PDF, ePub, Docs
Download : 764
Read : 1089
Download »
Finite Element Analysis Applications: A Systematic and Practical Approach strikes a solid balance between more traditional FEA textbooks that focus primarily on theory, and the software specific guidebooks that help teach students and professionals how to use particular FEA software packages without providing the theoretical foundation. In this new textbook, Professor Bi condenses the introduction of theories and focuses mainly on essentials that students need to understand FEA models. The book is organized to be application-oriented, covering FEA modeling theory and skills directly associated with activities involved in design processes. Discussion of classic FEA elements (such as truss, beam and frame) is limited. Via the use of several case studies, the book provides easy-to-follow guidance on modeling of different design problems. It uses SolidWorks simulation as the platform so that students do not need to waste time creating geometries for FEA modelling. Provides a systematic approach to dealing with the complexity of various engineering designs Includes sections on the design of machine elements to illustrate FEA applications Contains practical case studies presented as tutorials to facilitate learning of FEA methods Includes ancillary materials, such as a solutions manual for instructors, PPT lecture slides and downloadable CAD models for examples in SolidWorks

Finite Element Analysis in Geotechnical Engineering

Author : David M. Potts
File Size : 84.98 MB
Format : PDF, ePub, Mobi
Download : 275
Read : 1076
Download »
An insight into the use of the finite method in geotechnical engineering. The first volume covers the theory and the second volume covers the applications of the subject. The work examines popular constitutive models, numerical techniques and case studies.

Large Strain Finite Element Method

Author : Antonio Munjiza
File Size : 33.9 MB
Format : PDF, ePub, Mobi
Download : 399
Read : 189
Download »
An introductory approach to the subject of large strains and large displacements in finite elements. Large Strain Finite Element Method: A Practical Course, takes an introductory approach to the subject of large strains and large displacements in finite elements and starts from the basic concepts of finite strain deformability, including finite rotations and finite displacements. The necessary elements of vector analysis and tensorial calculus on the lines of modern understanding of the concept of tensor will also be introduced. This book explains how tensors and vectors can be described using matrices and also introduces different stress and strain tensors. Building on these, step by step finite element techniques for both hyper and hypo-elastic approach will be considered. Material models including isotropic, unisotropic, plastic and viscoplastic materials will be independently discussed to facilitate clarity and ease of learning. Elements of transient dynamics will also be covered and key explicit and iterative solvers including the direct numerical integration, relaxation techniques and conjugate gradient method will also be explored. This book contains a large number of easy to follow illustrations, examples and source code details that facilitate both reading and understanding. Takes an introductory approach to the subject of large strains and large displacements in finite elements. No prior knowledge of the subject is required. Discusses computational methods and algorithms to tackle large strains and teaches the basic knowledge required to be able to critically gauge the results of computational models. Contains a large number of easy to follow illustrations, examples and source code details. Accompanied by a website hosting code examples.

Structural Analysis with the Finite Element Method Linear Statics

Author : Eugenio Oñate
File Size : 90.54 MB
Format : PDF, Kindle
Download : 703
Read : 289
Download »
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elastic foundations, stress smoothing, error estimation and adaptive mesh refinement techniques, among others. The text concludes with a chapter on the mesh generation and visualization of FEM results. The book will be useful for students approaching the finite element analysis of structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis. STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 2: Beams, Plates and Shells Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM).The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume 2 presents a detailed description of the finite element formulation for analysis of slender and thick beams, thin and thick plates, folded plate structures, axisymmetric shells, general curved shells, prismatic structures and three dimensional beams. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems Emphasis is put on the treatment of structures with layered composite materials. The book will be useful for students approaching the finite element analysis of beam, plate and shell structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis.

Finite Element Analysis with Personal Computers

Author : Edward R. Champion
File Size : 77.49 MB
Format : PDF
Download : 750
Read : 403
Download »
This book addresses the history of finite element analysis (FEA) and why FEA is becoming a necessary tool for the solution of a wide variety of problems encountered in the professsional engineer's career. It helps the user to solve general classes of problems with FEA on personal computers.

Practical Stress Analysis in Engineering Design Second Edition

Author : Alexander Blake
File Size : 48.63 MB
Format : PDF, ePub
Download : 335
Read : 673
Download »
This Second Edition presents a hands-on design methodology for daily technical decisions without immersion in high mathematics.

Finite Element Analysis with Error Estimators

Author : J. E. Akin
File Size : 45.88 MB
Format : PDF, ePub, Docs
Download : 971
Read : 284
Download »
This key text is written for senior undergraduate and graduate engineering students. It delivers a complete introduction to finite element methods and to automatic adaptation (error estimation) that will enable students to understand and use FEA as a true engineering tool. It has been specifically developed to be accessible to non-mathematics students and provides the only complete text for FEA with error estimators for non-mathematicians. Error estimation is taught on nearly half of all FEM courses for engineers at senior undergraduate and postgraduate level; no other existing textbook for this market covers this topic. The only introductory FEA text with error estimation for students of engineering, scientific computing and applied mathematics Includes source code for creating and proving FEA error estimators

Nonlinear Continuum Mechanics for Finite Element Analysis

Author : Javier Bonet
File Size : 82.90 MB
Format : PDF, Kindle
Download : 438
Read : 686
Download »
Designing engineering components that make optimal use of materials requires consideration of the nonlinear characteristics associated with both manufacturing and working environments. The modeling of these characteristics can only be done through numerical formulation and simulation, and this requires an understanding of both the theoretical background and associated computer solution techniques. By presenting both nonlinear continuum analysis and associated finite element techniques under one roof, Bonet and Wood provide, in this edition of this successful text, a complete, clear, and unified treatment of these important subjects. New chapters dealing with hyperelastic plastic behavior are included, and the authors have thoroughly updated the FLagSHyP program, freely accessible at www.flagshyp.com. Worked examples and exercises complete each chapter, making the text an essential resource for postgraduates studying nonlinear continuum mechanics. It is also ideal for those in industry requiring an appreciation of the way in which their computer simulation programs work.

Introduction to Finite Element Analysis Using MATLAB and Abaqus

Author : Amar Khennane
File Size : 72.88 MB
Format : PDF, Mobi
Download : 963
Read : 735
Download »
There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB® and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MATLAB is a high-level language specially designed for dealing with matrices, making it particularly suited for programming the finite element method, while Abaqus is a suite of commercial finite element software. Includes more than 100 tables, photographs, and figures Provides MATLAB codes to generate contour plots for sample results Introduction to Finite Element Analysis Using MATLAB and Abaqus introduces and explains theory in each chapter, and provides corresponding examples. It offers introductory notes and provides matrix structural analysis for trusses, beams, and frames. The book examines the theories of stress and strain and the relationships between them. The author then covers weighted residual methods and finite element approximation and numerical integration. He presents the finite element formulation for plane stress/strain problems, introduces axisymmetric problems, and highlights the theory of plates. The text supplies step-by-step procedures for solving problems with Abaqus interactive and keyword editions. The described procedures are implemented as MATLAB codes and Abaqus files can be found on the CRC Press website.

Finite Element Analysis of Elastomers

Author : David Boast
File Size : 26.97 MB
Format : PDF, Kindle
Download : 370
Read : 700
Download »
Written by leading researchers and practitioners, Finite Element Analysis of Elastomers blends established knowledge in this important area with up-to-date research topics, practical hints and thought-provoking new ideas. The Editors, have compiled contributions by leading researchers and practitioners in finite element analysis (FEA): the result is an authoritative and agenda-setting volume. Finite element modelling can only be as good as the constitutive laws (material models) used, the means of obtaining and fitting the data for those models, and the accuracy of the boundary conditions. (The latter is of particular importance in cases of contact.) All three questions recieve particular attention in this book, as do aspects such as the interpretation and accuracy of FE outputs, with many practical examples being given. There is a short section on fatigue and failure, where particular concerns and approaches in this challenging area are discussed. Comprehensive coverage is given to particular issues concerning the problems of working with real elastomers, especially filled materials. Key features include: Constitutive laws for hyperelastic and inelastic aspects of behaviour Appropriate test methods Curve fitting to obtain constants for constitutive laws Interpretation of finite element results Modelling of crack growth Example applications.