Partial Differential Equations and Boundary-value Problems with Applications


Author: Mark A. Pinsky

Publisher: American Mathematical Soc.

ISBN: 0821868896

Category: Mathematics

Page: 526

View: 2224

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

Fourier Analysis and Its Applications


Author: G. B. Folland

Publisher: American Mathematical Soc.

ISBN: 9780821847909

Category: Mathematics

Page: 433

View: 958

This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.

An Introduction to Differential Equations and Their Applications


Author: Stanley J. Farlow

Publisher: Courier Corporation

ISBN: 0486135136

Category: Mathematics

Page: 640

View: 6508

This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.

Analytic, Algebraic and Geometric Aspects of Differential Equations

Będlewo, Poland, September 2015


Author: Galina Filipuk,Yoshishige Haraoka,Sławomir Michalik

Publisher: Birkhäuser

ISBN: 3319528424

Category: Mathematics

Page: 471

View: 5688

This volume consists of invited lecture notes, survey papers and original research papers from the AAGADE school and conference held in Będlewo, Poland in September 2015. The contributions provide an overview of the current level of interaction between algebra, geometry and analysis and demonstrate the manifold aspects of the theory of ordinary and partial differential equations, while also pointing out the highly fruitful interrelations between those aspects. These interactions continue to yield new developments, not only in the theory of differential equations but also in several related areas of mathematics and physics such as differential geometry, representation theory, number theory and mathematical physics. The main goal of the volume is to introduce basic concepts, techniques, detailed and illustrative examples and theorems (in a manner suitable for non-specialists), and to present recent developments in the field, together with open problems for more advanced and experienced readers. It will be of interest to graduate students, early-career researchers and specialists in analysis, geometry, algebra and related areas, as well as anyone interested in learning new methods and techniques.

Beginning Partial Differential Equations


Author: Peter V. O'Neil

Publisher: John Wiley & Sons

ISBN: 1118629981

Category: Mathematics

Page: 456

View: 6452

A broad introduction to PDEs with an emphasis on specializedtopics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics,Beginning Partial Differential Equations, Third Editionprovides a challenging, yet accessible, combination of techniques,applications, and introductory theory on the subjectof partialdifferential equations. The new edition offers nonstandardcoverageon material including Burger’s equation, thetelegraph equation, damped wavemotion, and the use ofcharacteristics to solve nonhomogeneous problems. The Third Edition is organized around four themes:methods of solution for initial-boundary value problems;applications of partial differential equations; existence andproperties of solutions; and the use of software to experiment withgraphics and carry out computations. With a primary focus on waveand diffusion processes, Beginning Partial DifferentialEquations, Third Edition also includes: Proofs of theorems incorporated within the topicalpresentation, such as the existence of a solution for the Dirichletproblem The incorporation of Maple™ to perform computations andexperiments Unusual applications, such as Poe’s pendulum Advanced topical coverage of special functions, such as Bessel,Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve importantproblems Beginning of Partial Differential Equations, ThirdEdition is an ideal textbook for upper-undergraduate andfirst-year graduate-level courses in analysis and appliedmathematics, science, and engineering.

Partial Differential Equations of Applied Mathematics


Author: Erich Zauderer

Publisher: John Wiley & Sons

ISBN: 1118031407

Category: Mathematics

Page: 968

View: 4327

This new edition features the latest tools for modeling, characterizing, and solving partial differential equations The Third Edition of this classic text offers a comprehensive guide to modeling, characterizing, and solving partial differential equations (PDEs). The author provides all the theory and tools necessary to solve problems via exact, approximate, and numerical methods. The Third Edition retains all the hallmarks of its previous editions, including an emphasis on practical applications, clear writing style and logical organization, and extensive use of real-world examples. Among the new and revised material, the book features: * A new section at the end of each original chapter, exhibiting the use of specially constructed Maple procedures that solve PDEs via many of the methods presented in the chapters. The results can be evaluated numerically or displayed graphically. * Two new chapters that present finite difference and finite element methods for the solution of PDEs. Newly constructed Maple procedures are provided and used to carry out each of these methods. All the numerical results can be displayed graphically. * A related FTP site that includes all the Maple code used in the text. * New exercises in each chapter, and answers to many of the exercises are provided via the FTP site. A supplementary Instructor's Solutions Manual is available. The book begins with a demonstration of how the three basic types of equations-parabolic, hyperbolic, and elliptic-can be derived from random walk models. It then covers an exceptionally broad range of topics, including questions of stability, analysis of singularities, transform methods, Green's functions, and perturbation and asymptotic treatments. Approximation methods for simplifying complicated problems and solutions are described, and linear and nonlinear problems not easily solved by standard methods are examined in depth. Examples from the fields of engineering and physical sciences are used liberally throughout the text to help illustrate how theory and techniques are applied to actual problems. With its extensive use of examples and exercises, this text is recommended for advanced undergraduates and graduate students in engineering, science, and applied mathematics, as well as professionals in any of these fields. It is possible to use the text, as in the past, without use of the new Maple material.

Kernel Functions and Elliptic Differential Equations in Mathematical Physics


Author: Stefan Bergman,Menahem Schiffer

Publisher: Courier Corporation

ISBN: 0486154653

Category: Mathematics

Page: 464

View: 7727

Covers the theory of boundary value problems in partial differential equations and discusses a portion of the theory from a unifying point of view while providing an introduction to each branch of its applications. 1953 edition.

Partial Differential Equations in Action

Complements and Exercises


Author: Sandro Salsa,Gianmaria Verzini

Publisher: Springer

ISBN: 3319154168

Category: Mathematics

Page: 431

View: 2450

This textbook presents problems and exercises at various levels of difficulty in the following areas: Classical Methods in PDEs (diffusion, waves, transport, potential equations); Basic Functional Analysis and Distribution Theory; Variational Formulation of Elliptic Problems; and Weak Formulation for Parabolic Problems and for the Wave Equation. Thanks to the broad variety of exercises with complete solutions, it can be used in all basic and advanced PDE courses.

Integral and Discrete Transforms with Applications and Error Analysis


Author: Abdul Jerri

Publisher: CRC Press

ISBN: 9780824782528

Category: Mathematics

Page: 848

View: 5431

This reference/text desribes the basic elements of the integral, finite, and discrete transforms - emphasizing their use for solving boundary and initial value problems as well as facilitating the representations of signals and systems.;Proceeding to the final solution in the same setting of Fourier analysis without interruption, Integral and Discrete Transforms with Applications and Error Analysis: presents the background of the FFT and explains how to choose the appropriate transform for solving a boundary value problem; discusses modelling of the basic partial differential equations, as well as the solutions in terms of the main special functions; considers the Laplace, Fourier, and Hankel transforms and their variations, offering a more logical continuation of the operational method; covers integral, discrete, and finite transforms and trigonometric Fourier and general orthogonal series expansion, providing an application to signal analysis and boundary-value problems; and examines the practical approximation of computing the resulting Fourier series or integral representation of the final solution and treats the errors incurred.;Containing many detailed examples and numerous end-of-chapter exercises of varying difficulty for each section with answers, Integral and Discrete Transforms with Applications and Error Analysis is a thorough reference for analysts; industrial and applied mathematicians; electrical, electronics, and other engineers; and physicists and an informative text for upper-level undergraduate and graduate students in these disciplines.