Search results for: on-the-relationship-between-conjugate-gradient-and-optimal-first-order-methods-for-convex-optimization

On the Relationship Between Conjugate Gradient and Optimal First Order Methods for Convex Optimization

Author : Sahar Karimi
File Size : 44.6 MB
Format : PDF, ePub
Download : 549
Read : 390
Download »
In a series of work initiated by Nemirovsky and Yudin, and later extended by Nesterov, first-order algorithms for unconstrained minimization with optimal theoretical complexity bound have been proposed. On the other hand, conjugate gradient algorithms as one of the widely used first-order techniques suffer from the lack of a finite complexity bound. In fact their performance can possibly be quite poor. This dissertation is partially on tightening the gap between these two classes of algorithms, namely the traditional conjugate gradient methods and optimal first-order techniques. We derive conditions under which conjugate gradient methods attain the same complexity bound as in Nemirovsky-Yudin's and Nesterov's methods. Moreover, we propose a conjugate gradient-type algorithm named CGSO, for Conjugate Gradient with Subspace Optimization, achieving the optimal complexity bound with the payoff of a little extra computational cost. We extend the theory of CGSO to convex problems with linear constraints. In particular we focus on solving $l_1$-regularized least square problem, often referred to as Basis Pursuit Denoising (BPDN) problem in the optimization community. BPDN arises in many practical fields including sparse signal recovery, machine learning, and statistics. Solving BPDN is fairly challenging because the size of the involved signals can be quite large; therefore first order methods are of particular interest for these problems. We propose a quasi-Newton proximal method for solving BPDN. Our numerical results suggest that our technique is computationally effective, and can compete favourably with the other state-of-the-art solvers.

Nonlinear Conjugate Gradient Methods for Unconstrained Optimization

Author : Neculai Andrei
File Size : 45.90 MB
Format : PDF
Download : 852
Read : 551
Download »
Two approaches are known for solving large-scale unconstrained optimization problems—the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method. This is the first book to detail conjugate gradient methods, showing their properties and convergence characteristics as well as their performance in solving large-scale unconstrained optimization problems and applications. Comparisons to the limited-memory and truncated Newton methods are also discussed. Topics studied in detail include: linear conjugate gradient methods, standard conjugate gradient methods, acceleration of conjugate gradient methods, hybrid, modifications of the standard scheme, memoryless BFGS preconditioned, and three-term. Other conjugate gradient methods with clustering the eigenvalues or with the minimization of the condition number of the iteration matrix, are also treated. For each method, the convergence analysis, the computational performances and the comparisons versus other conjugate gradient methods are given. The theory behind the conjugate gradient algorithms presented as a methodology is developed with a clear, rigorous, and friendly exposition; the reader will gain an understanding of their properties and their convergence and will learn to develop and prove the convergence of his/her own methods. Numerous numerical studies are supplied with comparisons and comments on the behavior of conjugate gradient algorithms for solving a collection of 800 unconstrained optimization problems of different structures and complexities with the number of variables in the range [1000,10000]. The book is addressed to all those interested in developing and using new advanced techniques for solving unconstrained optimization complex problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master students in mathematical programming, will find plenty of information and practical applications for solving large-scale unconstrained optimization problems and applications by conjugate gradient methods.

First Order Methods in Optimization

Author : Amir Beck
File Size : 23.52 MB
Format : PDF, Docs
Download : 730
Read : 1219
Download »
The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.

Recent Developments in Mechatronics and Intelligent Robotics

Author : Kevin Deng
File Size : 49.29 MB
Format : PDF, Docs
Download : 943
Read : 898
Download »
This book is a collection of proceedings of the International Conference on Mechatronics and Intelligent Robotics (ICMIR2018), held in Kunming, China during May 19–20, 2018. It consists of 155 papers, which have been categorized into 6 different sections: Intelligent Systems, Robotics, Intelligent Sensors & Actuators, Mechatronics, Computational Vision and Machine Learning, and Soft Computing. The volume covers the latest ideas and innovations both from the industrial and academic worlds, as well as shares the best practices in the fields of mechanical engineering, mechatronics, automatic control, IOT and its applications in industry, electrical engineering, finite element analysis and computational engineering. The volume covers key research outputs, which delivers a wealth of new ideas and food for thought to the readers.

Introductory Lectures on Convex Optimization

Author : Y. Nesterov
File Size : 71.54 MB
Format : PDF, Mobi
Download : 277
Read : 191
Download »
It was in the middle of the 1980s, when the seminal paper by Kar markar opened a new epoch in nonlinear optimization. The importance of this paper, containing a new polynomial-time algorithm for linear op timization problems, was not only in its complexity bound. At that time, the most surprising feature of this algorithm was that the theoretical pre diction of its high efficiency was supported by excellent computational results. This unusual fact dramatically changed the style and direc tions of the research in nonlinear optimization. Thereafter it became more and more common that the new methods were provided with a complexity analysis, which was considered a better justification of their efficiency than computational experiments. In a new rapidly develop ing field, which got the name "polynomial-time interior-point methods", such a justification was obligatory. Afteralmost fifteen years of intensive research, the main results of this development started to appear in monographs [12, 14, 16, 17, 18, 19]. Approximately at that time the author was asked to prepare a new course on nonlinear optimization for graduate students. The idea was to create a course which would reflect the new developments in the field. Actually, this was a major challenge. At the time only the theory of interior-point methods for linear optimization was polished enough to be explained to students. The general theory of self-concordant functions had appeared in print only once in the form of research monograph [12].

Matrix Analysis and Applications

Author : Xian-Da Zhang
File Size : 26.38 MB
Format : PDF, ePub, Mobi
Download : 781
Read : 307
Download »
The theory, methods and applications of matrix analysis are presented here in a novel theoretical framework.

Introduction to Optimization

Author : Boris Teodorovich Poli͡ak
File Size : 82.18 MB
Format : PDF
Download : 946
Read : 1185
Download »

Riemannian Optimization and Its Applications

Author : Hiroyuki Sato
File Size : 54.51 MB
Format : PDF, ePub, Docs
Download : 834
Read : 667
Download »
This brief describes the basics of Riemannian optimization—optimization on Riemannian manifolds—introduces algorithms for Riemannian optimization problems, discusses the theoretical properties of these algorithms, and suggests possible applications of Riemannian optimization to problems in other fields. To provide the reader with a smooth introduction to Riemannian optimization, brief reviews of mathematical optimization in Euclidean spaces and Riemannian geometry are included. Riemannian optimization is then introduced by merging these concepts. In particular, the Euclidean and Riemannian conjugate gradient methods are discussed in detail. A brief review of recent developments in Riemannian optimization is also provided. Riemannian optimization methods are applicable to many problems in various fields. This brief discusses some important applications including the eigenvalue and singular value decompositions in numerical linear algebra, optimal model reduction in control engineering, and canonical correlation analysis in statistics.

First Order Methods in Optimization

Author : Amir Beck
File Size : 44.67 MB
Format : PDF, ePub
Download : 257
Read : 169
Download »
The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.

Encyclopedia of Optimization

Author : Christodoulos A. Floudas
File Size : 42.18 MB
Format : PDF, Docs
Download : 527
Read : 1130
Download »
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".

Discrete Optimization and Operations Research

Author : Yury Kochetov
File Size : 58.61 MB
Format : PDF, Kindle
Download : 648
Read : 185
Download »
This book constitutes the proceedings of the 9th International Conference on Discrete Optimization and Operations Research, DOOR 2016, held in Vladivostok, Russia, in September 2016. The 39 full papers presented in this volume were carefully reviewed and selected from 181 submissions. They were organized in topical sections named: discrete optimization; scheduling problems; facility location; mathematical programming; mathematical economics and games; applications of operational research; and short communications.

Neural Networks and Deep Learning

Author : Charu C. Aggarwal
File Size : 78.43 MB
Format : PDF, ePub, Docs
Download : 305
Read : 378
Download »
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Lectures on Convex Optimization

Author : Yurii Nesterov
File Size : 37.48 MB
Format : PDF
Download : 783
Read : 981
Download »
This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.

Regularization Optimization Kernels and Support Vector Machines

Author : Johan A.K. Suykens
File Size : 61.4 MB
Format : PDF, ePub, Docs
Download : 958
Read : 794
Download »
Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference: Covers the relationship between support vector machines (SVMs) and the Lasso Discusses multi-layer SVMs Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing Describes graph-based regularization methods for single- and multi-task learning Considers regularized methods for dictionary learning and portfolio selection Addresses non-negative matrix factorization Examines low-rank matrix and tensor-based models Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.

The Mathematics of Data

Author : Michael W. Mahoney
File Size : 43.83 MB
Format : PDF, Mobi
Download : 938
Read : 611
Download »
Nothing provided

Operations Research in Transportation Systems

Author : A.S. Belenky
File Size : 46.14 MB
Format : PDF
Download : 862
Read : 392
Download »
The scientific monograph of a survey kind presented to the reader's attention deals with fundamental ideas and basic schemes of optimization methods that can be effectively used for solving strategic planning and operations manage ment problems related, in particular, to transportation. This monograph is an English translation of a considerable part of the author's book with a similar title that was published in Russian in 1992. The material of the monograph embraces methods of linear and nonlinear programming; nonsmooth and nonconvex optimization; integer programming, solving problems on graphs, and solving problems with mixed variables; rout ing, scheduling, solving network flow problems, and solving the transportation problem; stochastic programming, multicriteria optimization, game theory, and optimization on fuzzy sets and under fuzzy goals; optimal control of systems described by ordinary differential equations, partial differential equations, gen eralized differential equations (differential inclusions), and functional equations with a variable that can assume only discrete values; and some other methods that are based on or adjoin to the listed ones.

First order and Stochastic Optimization Methods for Machine Learning

Author : Guanghui Lan
File Size : 52.23 MB
Format : PDF
Download : 295
Read : 504
Download »
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Mathematical Reviews

Author :
File Size : 57.35 MB
Format : PDF, Docs
Download : 347
Read : 750
Download »

Modern Control Engineering

Author : Maxwell Noton
File Size : 30.14 MB
Format : PDF, ePub, Docs
Download : 945
Read : 443
Download »
Modern Control Engineering focuses on the methodologies, principles, approaches, and technologies employed in modern control engineering, including dynamic programming, boundary iterations, and linear state equations. The publication fist ponders on state representation of dynamical systems and finite dimensional optimization. Discussions focus on optimal control of dynamical discrete-time systems, parameterization of dynamical control problems, conjugate direction methods, convexity and sufficiency, linear state equations, transition matrix, and stability of discrete-time linear systems. The text then tackles infinite dimensional optimization, including computations with inequality constraints, gradient method in function space, quasilinearization, computation of optimal control-direct and indirect methods, and boundary iterations. The book takes a look at dynamic programming and introductory stochastic estimation and control. Topics include deterministic multivariable observers, stochastic feedback control, stochastic linear-quadratic control problem, general calculation of optimal control by dynamic programming, and results for linear multivariable digital control systems. The publication is a dependable reference material for engineers and researchers wanting to explore modern control engineering.

Current Engineering Practice

Author :
File Size : 49.17 MB
Format : PDF, Mobi
Download : 298
Read : 1061
Download »