Search results for: numerical-optimization-techniques-for-engineering-design

Numerical Optimization Techniques for Engineering Design

Author : Garret N. Vanderplaats
File Size : 40.38 MB
Format : PDF, ePub
Download : 172
Read : 957
Download »

Numerical Optimization Techniques for Engineering Design

Author : Garrett N. Vanderplaats
File Size : 29.11 MB
Format : PDF
Download : 494
Read : 852
Download »
This book describes numerical optimization techniques, with emphasis on applications to engineering design. These methods may be used to minimize/maximize one or more functions with limits, or constraints, on others. Optimization may be used with almost any computer based analysis program to efficiently improve an engineering design. Chapter 1 presents basic concepts of function minimization. Chapter 2 deals with minimizing functions of one variable. Chapter 3 describes methods for minimizing unconstrained functions of many variables. Chapters 4 through 9 deal with general constrained optimization. Chapter 10 describes the specific subject of structural optimization and Chapter 11 deals with general applications in mechanical, automotive and aerospace engineering. Numerous references are provided for further study. A CD-ROM is included which contains demonstration versions of the VisualDOC and DOT general optimization programs and the GENESIS structural optimization program from Vanderplaats Research & Development.

Numerical Optimization Techniques

Author : Yurij G. Evtushenko
File Size : 54.37 MB
Format : PDF, ePub, Docs
Download : 571
Read : 827
Download »
The book of Professor Evtushenko describes both the theoretical foundations and the range of applications of many important methods for solving nonlinear programs. Particularly emphasized is their use for the solution of optimal control problems for ordinary differential equations. These methods were instrumented in a library of programs for an interactive system (DISO) at the Computing Center of the USSR Academy of Sciences, which can be used to solve a given complicated problem by a combination of appropriate methods in the interactive mode. Many examples show the strong as well the weak points of particular methods and illustrate the advantages gained by their combination. In fact, it is the central aim of the author to pOint out the necessity of using many techniques interactively, in order to solve more dif ficult problems. A noteworthy feature of the book for the Western reader is the frequently unorthodox analysis of many known methods in the great tradition of Russian mathematics. J. Stoer PREFACE Optimization methods are finding ever broader application in sci ence and engineering. Design engineers, automation and control systems specialists, physicists processing experimental data, eco nomists, as well as operations research specialists are beginning to employ them routinely in their work. The applications have in turn furthered vigorous development of computational techniques and engendered new directions of research. Practical implementa tion of many numerical methods of high computational complexity is now possible with the availability of high-speed large-memory digital computers.

Engineering Optimization

Author : S. S. Rao
File Size : 30.36 MB
Format : PDF, Docs
Download : 877
Read : 1326
Download »
A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems.Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries.In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design.Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques.Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References.Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.

Design and Optimization of Thermal Systems

Author : Yogesh Jaluria
File Size : 46.99 MB
Format : PDF, Kindle
Download : 414
Read : 913
Download »
Thermal systems play an increasingly symbiotic role alongside mechanical systems in varied applications spanning materials processing, energy conversion, pollution, aerospace, and automobiles. Responding to the need for a flexible, yet systematic approach to designing thermal systems across such diverse fields, Design and Optimization of Thermal

Numerical Engineering Optimization

Author : Andreas Öchsner
File Size : 38.15 MB
Format : PDF, Docs
Download : 523
Read : 622
Download »
This study aid on numerical optimization techniques is intended for university undergraduate and postgraduate mechanical engineering students. Optimization procedures are becoming more and more important for lightweight design, where weight reduction can, for example in the case of automotive or aerospace industry, lead to lower fuel consumption and a corresponding reduction in operational costs as well as beneficial effects on the environment. Based on the free computer algebra system Maxima, the authors present procedures for numerically solving problems in engineering mathematics as well as applications taken from traditional courses on the strength of materials. The mechanical theories focus on the typical one-dimensional structural elements, i.e., springs, bars, and Euler–Bernoulli beams, in order to reduce the complexity of the numerical framework and limit the resulting design to a low number of variables. The use of a computer algebra system and the incorporated functions, e.g., for derivatives or equation solving, allows a greater focus on the methodology of the optimization methods and not on standard procedures. The book also provides numerous examples, including some that can be solved using a graphical approach to help readers gain a better understanding of the computer implementation.

Numerical Techniques for Engineering Analysis and Design

Author : G.N. Pande
File Size : 27.42 MB
Format : PDF, Kindle
Download : 978
Read : 844
Download »
Numerical methods and related computer based algorithms form the logical solution for. many complex problems encountered in science and engineering. Although numerical techniques are now well established, they have continued to expand and diversify, particularly in the fields of engineering analysis and design. Various engineering departments in the University College of Swansea, in particular, Civil, Chemical, Electrical and Computer Science, have groups working in these areas. It is from this mutual interest that the NUMETA conference series was conceived with the main objective of providing a link between engineers developing new numerical techniques and those applying them in practice. Encouraged by the success of NUMETA '85, the second conference, NUMETA '87, was held at Swansea, 6-10 July 1987. Over two hundred and twenty abstracts were submitted for consideration together with a number of invited papers from experts in the field of numerical methods. The final selection of contributed and invited papers were of a high quality and have culminated in the two volumes which form these proceedings. This volume contains papers on the themes of 'Numerical Techniques for Engineering Analysis and Design' and 'Developments in Engineering Software'. Many new developments on a wide variety of topics have been reported and these proceedings contain a wealth of information and references which we believe will be of great interest to theoreticians and practising engineers alike.

Multidiscipline Design Optimization

Author : Garret N. Vanderplaats
File Size : 59.23 MB
Format : PDF, Mobi
Download : 144
Read : 191
Download »
This book describes numerical optimization techniques, with emphasis on application to engineering design. These methods may be used to minimize/maximize one or more functions with limits, or constraints, on others. Optimization may be used with almost any computer based analysis program to efficiently improve an engineering design. Chapter 1 presents basic concepts of function minimization. Chapter 2 describes methods for minimizing unconstrained functions of many variables. Chapter 4 through 8 deal with general constrained optimization. These first eight chapters providethe building blocks for Multidiscipline Design Optimization. Chapter 9 describes the specific subjec tof structural optimization and Chapter 10 deals with general applications in mechanical, automotive and aerospaceengineering. These two chapters deal with single discipline optimization. Chapter 11 brings it all together for the design of systems considering several disciplines. This chapter provides an engineering approach to Multidiscipline design optimization that has proved to be effective in industrial applications. Numerous references are provided for further study.

Control and Dynamic Systems V57 Multidisciplinary Engineering Systems Design and Optimization Techniques and Their Application

Author : C.T. Leonides
File Size : 54.90 MB
Format : PDF, Docs
Download : 689
Read : 401
Download »
Control and Dynamic Systems: Advances in Theory and Applications, Volume 57: Multidisciplinary Engineering Systems: Design and Optimization Techniques and their Application deals with techniques used in the design and optimization of future engineering systems. Comprised of 11 chapters, this book covers techniques for improving product design quality in multidisciplinary systems. These techniques include decomposition techniques for synthesis process; optimization for aircraft systems; actuator and sensor placement; and robust techniques in system design and control process. Students, research workers, and practising engineers will find this book invaluable.

Engineering Optimization

Author : Singiresu S. Rao
File Size : 80.42 MB
Format : PDF, Docs
Download : 853
Read : 961
Download »
The revised and updated new edition of the popular optimization book for engineers The thoroughly revised and updated fifth edition of Engineering Optimization: Theory and Practice offers engineers a guide to the important optimization methods that are commonly used in a wide range of industries. The author—a noted expert on the topic—presents both the classical and most recent optimizations approaches. The book introduces the basic methods and includes information on more advanced principles and applications. The fifth edition presents four new chapters: Solution of Optimization Problems Using MATLAB; Metaheuristic Optimization Methods; Multi-Objective Optimization Methods; and Practical Implementation of Optimization. All of the book's topics are designed to be self-contained units with the concepts described in detail with derivations presented. The author puts the emphasis on computational aspects of optimization and includes design examples and problems representing different areas of engineering. Comprehensive in scope, the book contains solved examples, review questions and problems. This important book: Offers an updated edition of the classic work on optimization Includes approaches that are appropriate for all branches of engineering Contains numerous practical design and engineering examples Offers more than 140 illustrative examples, 500 plus references in the literature of engineering optimization, and more than 500 review questions and answers Demonstrates the use of MATLAB for solving different types of optimization problems using different techniques Written for students across all engineering disciplines, the revised edition of Engineering Optimization: Theory and Practice is the comprehensive book that covers the new and recent methods of optimization and reviews the principles and applications.

Engineering Optimization in Design Processes

Author : Hans A. Eschenauer
File Size : 22.56 MB
Format : PDF, Mobi
Download : 716
Read : 809
Download »
These proceedings contain the texts of 37 contributions presented at the International Conference on Engineering Optimization in an Industrial Environment, which took place on 3 - 4 September 1990 at the Karlsruhe Nuclear Hesearch Center, I~H Germany. The presentations consisted of oral and poster contributions arranged in five sessions: • Shape and layout optimization • Structural optimization with advanced materials • Optimal designs with special structural and material beha viour • Sensitivity analysis - Programme systems • Optimization with stability constraints - Special problems The editors wish to express their appreciation to all authors and invited speakers for their in teresting contributions. The proceedings cover a wide range of topics in structural optimization representing the present state of the art in the fields of research and in the industrial environment as well. The editors hope that this book will also contribute towards new ideas and concepts in a world of ever decreasing natural resources and ever increasing demands for lighter and yet stronger and safer technical components. I"inally, the editors wish to thank all colleagues who helped in the organisation of the conference, especially Mrs. E. Schroder anq Dr. K.llethge, as well as Mr. A. von lIagen and Mrs. E. Haufelder, Springer Publishing Company, Heidelberg for the good cooperation and help in the publication of these proceedings.

EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization

Author : H.C. Rodrigues
File Size : 21.98 MB
Format : PDF, Docs
Download : 866
Read : 551
Download »
The papers in this volume focus on the following topics: design optimization and inverse problems, numerical optimization techniques,efficient analysis and reanalysis techniques, sensitivity analysis and industrial applications. The conference EngOpt brings together engineers, applied mathematicians and computer scientists working on research, development and practical application of optimization methods in all engineering disciplines and applied sciences.

Genetic Algorithms and Engineering Design

Author : Mitsuo Gen
File Size : 45.72 MB
Format : PDF, ePub, Mobi
Download : 342
Read : 1225
Download »
The last few years have seen important advances in the use ofgenetic algorithms to address challenging optimization problems inindustrial engineering. Genetic Algorithms and Engineering Designis the only book to cover the most recent technologies and theirapplication to manufacturing, presenting a comprehensive and fullyup-to-date treatment of genetic algorithms in industrialengineering and operations research. Beginning with a tutorial on genetic algorithm fundamentals andtheir use in solving constrained and combinatorial optimizationproblems, the book applies these techniques to problems in specificareas--sequencing, scheduling and production plans, transportationand vehicle routing, facility layout, location-allocation, andmore. Each topic features a clearly written problem description,mathematical model, and summary of conventional heuristicalgorithms. All algorithms are explained in intuitive, rather thanhighly-technical, language and are reinforced with illustrativefigures and numerical examples. Written by two internationally acknowledged experts in the field,Genetic Algorithms and Engineering Design features originalmaterial on the foundation and application of genetic algorithms,and also standardizes the terms and symbols used in othersources--making this complex subject truly accessible to thebeginner as well as to the more advanced reader. Ideal for both self-study and classroom use, this self-containedreference provides indispensable state-of-the-art guidance toprofessionals and students working in industrial engineering,management science, operations research, computer science, andartificial intelligence. The only comprehensive, state-of-the-arttreatment available on the use of genetic algorithms in industrialengineering and operations research . . . Written by internationally recognized experts in the field ofgenetic algorithms and artificial intelligence, Genetic Algorithmsand Engineering Design provides total coverage of currenttechnologies and their application to manufacturing systems.Incorporating original material on the foundation and applicationof genetic algorithms, this unique resource also standardizes theterms and symbols used in other sources--making this complexsubject truly accessible to students as well as experiencedprofessionals. Designed for clarity and ease of use, thisself-contained reference: * Provides a comprehensive survey of selection strategies, penaltytechniques, and genetic operators used for constrained andcombinatorial optimization problems * Shows how to use genetic algorithms to make production schedules,solve facility/location problems, make transportation/vehiclerouting plans, enhance system reliability, and much more * Contains detailed numerical examples, plus more than 160auxiliary figures to make solution procedures transparent andunderstandable

Artificial Intelligence in Design 96

Author : John S. Gero
File Size : 49.14 MB
Format : PDF, Docs
Download : 818
Read : 882
Download »
Change is one of the most significant parameters in our society. Designers are amongst the primary change agents for any society. As a consequence design is an important research topic in engineering and architecture and related disciplines, since design is not only a means of change but is also one of the keystones to economic competitiveness and the fundamental precursor to manufacturing. The development of computational models founded on the artificial intelligence paradigm has provided an impetus for much of current design research -both computational and cognitive. These forms of design research have only been carried out in the last decade or so and in the temporal sense they are still immature. Notwithstanding this immaturity, noticeable advances have been made both in extending our understanding of design and in developing tools based on that understanding. Whilst many researchers in the field of artificial intelligence in design utilise ideas about how humans design as one source of concepts there is normally no attempt to model human designers. Rather the results of the research presented in this volume demonstrate approaches to increasing our understanding of design as a process.

Optimization Concepts and Applications in Engineering

Author : Ashok D. Belegundu
File Size : 42.81 MB
Format : PDF
Download : 355
Read : 277
Download »
In this revised and enhanced second edition of Optimization Concepts and Applications in Engineering, the already robust pedagogy has been enhanced with more detailed explanations, an increased number of solved examples and end-of-chapter problems. The source codes are now available free on multiple platforms. It is vitally important to meet or exceed previous quality and reliability standards while at the same time reducing resource consumption. This textbook addresses this critical imperative integrating theory, modeling, the development of numerical methods, and problem solving, thus preparing the student to apply optimization to real-world problems. This text covers a broad variety of optimization problems using: unconstrained, constrained, gradient, and non-gradient techniques; duality concepts; multiobjective optimization; linear, integer, geometric, and dynamic programming with applications; and finite element-based optimization. It is ideal for advanced undergraduate or graduate courses and for practising engineers in all engineering disciplines, as well as in applied mathematics.

Introduction to Optimum Design

Author : Jasbir Arora
File Size : 38.31 MB
Format : PDF, Docs
Download : 209
Read : 1030
Download »
Introduction to Optimum Design, Third Edition describes an organized approach to engineering design optimization in a rigorous yet simplified manner. It illustrates various concepts and procedures with simple examples and demonstrates their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB® are featured as learning and teaching aids. Basic concepts of optimality conditions and numerical methods are described with simple and practical examples, making the material highly teachable and learnable Includes applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems Introduction to MATLAB Optimization Toolbox Practical design examples introduce students to the use of optimization methods early in the book New example problems throughout the text are enhanced with detailed illustrations Optimum design with Excel Solver has been expanded into a full chapter New chapter on several advanced optimum design topics serves the needs of instructors who teach more advanced courses

Engineering Design Reliability Handbook

Author : Efstratios Nikolaidis
File Size : 63.35 MB
Format : PDF
Download : 134
Read : 798
Download »
Researchers in the engineering industry and academia are making important advances on reliability-based design and modeling of uncertainty when data is limited. Non deterministic approaches have enabled industries to save billions by reducing design and warranty costs and by improving quality. Considering the lack of comprehensive and defini

Machine Learning in Engineering

Author : Giuseppe Cerbone
File Size : 79.79 MB
Format : PDF, Mobi
Download : 203
Read : 762
Download »
Many important application problems in engineering can be formalized as nonlinear optimization tasks. However, numerical methods for solving such problems are brittle and do not scale well. For example, these methods depend critically on choosing a good starting point from which to perform the optimization search. In high-dimensional spaces, numerical methods have difficulty finding solutions that are even locally optimal. The objective of this thesis is to demonstrate how machine learning techniques can improve the performance of numerical optimizers and facilitate optimization in engineering design. The machine learning methods have been tested in the domain of 2-dimensional structural design, where the goal is to find a truss of minimum weight that bears a set of fixed loads. Trusses are constructed from pure tension and pure compression members. The difference in the load-bearing properties of tension and compression members causes the gradient of the objective function to be discontinuous, and this prevents the application of powerful gradient-based optimization algorithms in this domain. In this thesis, the approach to numerical optimization is to find ways of transforming the initial problem into a selected set of subproblems where efficient, gradient-based algorithms can be applied. This is achieved by a three-step "compilation" process. The first step is to apply speedup learning techniques to partition the overall optimization task into sub-problems for which the gradient is continuous. Then, the second step is to further simplify each sub-problem by using inductive learning techniques to identify regularities and exploit them to reduce the number of independent variables. Unfortunately, these first two steps have the potential to produce an exponential number of sub-problems. Hence, in the third step, selection rules are derived to identify those sub-problems that are most likely to contain the global optimum. The numerical optimization procedures are only applied to these selected sub-problems. To identify good sub-problems, a novel ID3-like inductive learning algorithm called UTILITYID3 is applied to a collection of training examples to discover selection rules. These rules analyze the problem statement and identify a small number of sub-problems (typically 3) that are likely to contain the global optimum. In the domain of 2-dimensional structural design, the combination of these three steps yields a 6-fold speedup in the time required to find an optimal solution. Furthermore, it turns out that this method is less reliant on a good starting point for optimization. The methods developed in this problem show promise of being applied to a wide range of numerical optimization problems in engineering design.

Design Optimization of Fluid Machinery

Author : Kwang-Yong Kim
File Size : 88.54 MB
Format : PDF
Download : 734
Read : 533
Download »
Design Optimization of Fluid Machinery: Applying Computational Fluid Dynamics and Numerical Optimization Drawing on extensive research and experience, this timely reference brings together numerical optimization methods for fluid machinery and its key industrial applications. It logically lays out the context required to understand computational fluid dynamics by introducing the basics of fluid mechanics, fluid machines and their components. Readers are then introduced to single and multi-objective optimization methods, automated optimization, surrogate models, and evolutionary algorithms. Finally, design approaches and applications in the areas of pumps, turbines, compressors, and other fluid machinery systems are clearly explained, with special emphasis on renewable energy systems. Written by an international team of leading experts in the field Brings together optimization methods using computational fluid dynamics for fluid machinery in one handy reference Features industrially important applications, with key sections on renewable energy systems Design Optimization of Fluid Machinery is an essential guide for graduate students, researchers, engineers working in fluid machinery and its optimization methods. It is a comprehensive reference text for advanced students in mechanical engineering and related fields of fluid dynamics and aerospace engineering.

Advances in Structural and Multidisciplinary Optimization

Author : Axel Schumacher
File Size : 44.85 MB
Format : PDF, ePub, Mobi
Download : 896
Read : 412
Download »
The volume includes papers from the WSCMO conference in Braunschweig 2017 presenting research of all aspects of the optimal design of structures as well as multidisciplinary design optimization where the involved disciplines deal with the analysis of solids, fluids or other field problems. Also presented are practical applications of optimization methods and the corresponding software development in all branches of technology.