# Numbers and Proofs

Author: Reg Allenby

Publisher: Elsevier

ISBN: 0080928773

Category: Mathematics

Page: 288

View: 2823

'Numbers and Proofs' presents a gentle introduction to the notion of proof to give the reader an understanding of how to decipher others' proofs as well as construct their own. Useful methods of proof are illustrated in the context of studying problems concerning mainly numbers (real, rational, complex and integers). An indispensable guide to all students of mathematics. Each proof is preceded by a discussion which is intended to show the reader the kind of thoughts they might have before any attempt proof is made. Established proofs which the student is in a better position to follow then follow. Presented in the author's entertaining and informal style, and written to reflect the changing profile of students entering universities, this book will prove essential reading for all seeking an introduction to the notion of proof as well as giving a definitive guide to the more common forms. Stressing the importance of backing up "truths" found through experimentation, with logically sound and watertight arguments, it provides an ideal bridge to more complex undergraduate maths.

# The Art of Proof

Basic Training for Deeper Mathematics

Author: Matthias Beck,Ross Geoghegan

Publisher: Springer Science & Business Media

ISBN: 9781441970237

Category: Mathematics

Page: 182

View: 4070

The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.

# Numbers, Sequences and Series

Author: Keith E. Hirst

Publisher: Butterworth-Heinemann

ISBN: 0340610433

Category: Mathematics

Page: 198

View: 9749

Concerned with the logical foundations of number systems from integers to complex numbers.

# Heinemann Modular Maths Edexcel Further Pure Maths 3

Author: Geoff Mannall,Michael Kenwood

Publisher: Heinemann

ISBN: 9780435511029

Category: A-level examinations

Page: 202

View: 7967

Drawing on over 10 years' experience of publishing for Edexcel maths, Heinemann Modular Maths for Edexcel AS and A Level brings you dedicated textbooks to help you give your students a clear route to success, now with new Core maths titles to match the new 2004 specification. Further Pure 3 replaces Pure 6 in the new specification.

# Partitions, q-Series, and Modular Forms

Publisher: Springer Science & Business Media

ISBN: 1461400287

Category: Mathematics

Page: 224

View: 3969

Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.

# Groups

Author: Camilla R. Jordan,David A. Jordan

Publisher: Butterworth-Heinemann

ISBN: 034061045X

Category: Mathematics

Page: 207

View: 1373

Introduction to mathematical groups

# Elementary Number Theory

Author: Gareth A. Jones,Josephine M. Jones

Publisher: Springer Science & Business Media

ISBN: 9783540761976

Category: Mathematics

Page: 302

View: 2617

An undergraduate-level introduction to number theory, with the emphasis on fully explained proofs and examples. Exercises, together with their solutions are integrated into the text, and the first few chapters assume only basic school algebra. Elementary ideas about groups and rings are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares. In particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.

# Modular Functions in Analytic Number Theory

Publisher: American Mathematical Soc.

ISBN: 9780821844885

Category: Mathematics

Page: 154

View: 3927

Knopp's engaging book presents an introduction to modular functions in number theory by concentrating on two modular functions, $\eta(\tau)$ and $\vartheta(\tau)$, and their applications to two number-theoretic functions, $p(n)$ and $r_s(n)$. They are well chosen, as at the heart of these particular applications to the treatment of these specific number-theoretic functions lies the general theory of automorphic functions, a theory of far-reaching significance with important connections to a great many fields of mathematics. The book is essentially self-contained, assuming only a good first-year course in analysis. The excellent exposition presents the beautiful interplay between modular forms and number theory, making the book an excellent introduction to analytic number theory for a beginning graduate student.

# Number Theory in the Spirit of Ramanujan

Author: Bruce C. Berndt

Publisher: American Mathematical Soc.

ISBN: 0821841785

Category: Mathematics

Page: 187

View: 4514

Ramanujan is recognized as one of the great number theorists of the twentieth century. Here now is the first book to provide an introduction to his work in number theory. Most of Ramanujan's work in number theory arose out of $q$-series and theta functions. This book provides an introduction to these two important subjects and to some of the topics in number theory that are inextricably intertwined with them, including the theory of partitions, sums of squares and triangular numbers, and the Ramanujan tau function. The majority of the results discussed here are originally due to Ramanujan or were rediscovered by him. Ramanujan did not leave us proofs of the thousands of theorems he recorded in his notebooks, and so it cannot be claimed that many of the proofs given in this book are those found by Ramanujan. However, they are all in the spirit of his mathematics.The subjects examined in this book have a rich history dating back to Euler and Jacobi, and they continue to be focal points of contemporary mathematical research. Therefore, at the end of each of the seven chapters, Berndt discusses the results established in the chapter and places them in both historical and contemporary contexts. The book is suitable for advanced undergraduates and beginning graduate students interested in number theory.

# Women in Numbers 2: Research Directions in Number Theory

Author: Chantal David,Matilde Lalín, Michelle Manes

Publisher: American Mathematical Soc.

ISBN: 1470410222

Category: Mathematics

Page: 206

View: 3667

The second Women in Numbers workshop (WIN2) was held November 6-11, 2011, at the Banff International Research Station (BIRS) in Banff, Alberta, Canada. During the workshop, group leaders presented open problems in various areas of number theory, and working groups tackled those problems in collaborations begun at the workshop and continuing long after. This volume collects articles written by participants of WIN2. Survey papers written by project leaders are designed to introduce areas of active research in number theory to advanced graduate students and recent PhDs. Original research articles by the project groups detail their work on the open problems tackled during and after WIN2. Other articles in this volume contain new research on related topics by women number theorists. The articles collected here encompass a wide range of topics in number theory including Galois representations, the Tamagawa number conjecture, arithmetic intersection formulas, Mahler measures, Newton polygons, the Dwork family, elliptic curves, cryptography, and supercongruences. WIN2 and this Proceedings volume are part of the Women in Numbers network, aimed at increasing the visibility of women researchers' contributions to number theory and at increasing the participation of women mathematicians in number theory and related fields. This book is co-published with the Centre de Recherches Mathématiques.