Search results for: nanoscale-semiconductor-memories

Nanoscale Semiconductor Memories

Author : Santosh K. Kurinec
File Size : 87.16 MB
Format : PDF, Mobi
Download : 243
Read : 861
Download »
Nanoscale memories are used everywhere. From your iPhone to a supercomputer, every electronic device contains at least one such type. With coverage of current and prototypical technologies, Nanoscale Semiconductor Memories: Technology and Applications presents the latest research in the field of nanoscale memories technology in one place. It also covers a myriad of applications that nanoscale memories technology has enabled. The book begins with coverage of SRAM, addressing the design challenges as the technology scales, then provides design strategies to mitigate radiation induced upsets in SRAM. It discusses the current state-of-the-art DRAM technology and the need to develop high performance sense amplifier circuitry. The text then covers the novel concept of capacitorless 1T DRAM, termed as Advanced-RAM or A-RAM, and presents a discussion on quantum dot (QD) based flash memory. Building on this foundation, the coverage turns to STT-RAM, emphasizing scalable embedded STT-RAM, and the physics and engineering of magnetic domain wall "racetrack" memory. The book also discusses state-of-the-art modeling applied to phase change memory devices and includes an extensive review of RRAM, highlighting the physics of operation and analyzing different materials systems currently under investigation. The hunt is still on for universal memory that fits all the requirements of an "ideal memory" capable of high-density storage, low-power operation, unparalleled speed, high endurance, and low cost. Taking an interdisciplinary approach, this book bridges technological and application issues to provide the groundwork for developing custom designed memory systems.

Self Organized Quantum Dots for Memories

Author : Tobias Nowozin
File Size : 72.68 MB
Format : PDF, ePub, Docs
Download : 822
Read : 583
Download »
Today’s semiconductor memory market is divided between two types of memory: DRAM and Flash. Each has its own advantages and disadvantages. While DRAM is fast but volatile, Flash is non-volatile but slow. A memory system based on self-organized quantum dots (QDs) as storage node could combine the advantages of modern DRAM and Flash, thus merging the latter’s non-volatility with very fast write times. This thesis investigates the electronic properties of and carrier dynamics in self-organized quantum dots by means of time-resolved capacitance spectroscopy and time-resolved current measurements. The first aim is to study the localization energy of various QD systems in order to assess the potential of increasing the storage time in QDs to non-volatility. Surprisingly, it is found that the major impact of carrier capture cross-sections of QDs is to influence, and at times counterbalance, carrier storage in addition to the localization energy. The second aim is to study the coupling between a layer of self-organized QDs and a two-dimensional hole gas (2DHG), which is relevant for the read-out process in memory systems. The investigation yields the discovery of the many-particle ground states in the QD ensemble. In addition to its technological relevance, the thesis also offers new insights into the fascinating field of nanostructure physics.

Testing for Small Delay Defects in Nanoscale CMOS Integrated Circuits

Author : Sandeep K. Goel
File Size : 47.88 MB
Format : PDF, ePub, Mobi
Download : 429
Read : 748
Download »
Advances in design methods and process technologies have resulted in a continuous increase in the complexity of integrated circuits (ICs). However, the increased complexity and nanometer-size features of modern ICs make them susceptible to manufacturing defects, as well as performance and quality issues. Testing for Small-Delay Defects in Nanoscale CMOS Integrated Circuits covers common problems in areas such as process variations, power supply noise, crosstalk, resistive opens/bridges, and design-for-manufacturing (DfM)-related rule violations. The book also addresses testing for small-delay defects (SDDs), which can cause immediate timing failures on both critical and non-critical paths in the circuit. Overviews semiconductor industry test challenges and the need for SDD testing, including basic concepts and introductory material Describes algorithmic solutions incorporated in commercial tools from Mentor Graphics Reviews SDD testing based on "alternative methods" that explores new metrics, top-off ATPG, and circuit topology-based solutions Highlights the advantages and disadvantages of a diverse set of metrics, and identifies scope for improvement Written from the triple viewpoint of university researchers, EDA tool developers, and chip designers and tool users, this book is the first of its kind to address all aspects of SDD testing from such a diverse perspective. The book is designed as a one-stop reference for current industrial practices, research challenges in the domain of SDD testing, and recent developments in SDD solutions.

Semiconductor Devices in Harsh Conditions

Author : Kirsten Weide-Zaage
File Size : 71.57 MB
Format : PDF, Mobi
Download : 120
Read : 333
Download »
This book introduces the reader to a number of challenges for the operation of electronic devices in various harsh environmental conditions. While some chapters focus on measuring and understanding the effects of these environments on electronic components, many also propose design solutions, whether in choice of material, innovative structures, or strategies for amelioration and repair. Many applications need electronics designed to operate in harsh environments. Readers will find, in this collection of topics, tools and ideas useful in their own pursuits and of interest to their intellectual curiosity. With a focus on radiation, operating conditions, sensor systems, package, and system design, the book is divided into three parts. The first part deals with sensing devices designed for operating in the presence of radiation, commercials of the shelf (COTS) products for space computing, and influences of single event upset. The second covers system and package design for harsh operating conditions. The third presents devices for biomedical applications under moisture and temperature loads in the frame of sensor systems and operating conditions.

Advances in Communication Signal Processing VLSI and Embedded Systems

Author : Shubhakar Kalya
File Size : 65.64 MB
Format : PDF, ePub, Mobi
Download : 442
Read : 949
Download »
This book comprises selected peer-reviewed papers from the International Conference on VLSI, Signal Processing, Power Systems, Illumination and Lighting Control, Communication and Embedded Systems (VSPICE-2019). The contents are divided into five broad topics - VLSI and embedded systems, signal processing, power systems, illumination and control, and communication and networking. The book focuses on the latest innovations, trends, and challenges encountered in the different areas of electronics and communication, and electrical engineering. It also offers potential solutions and provides an insight into various emerging areas such as image fusion, bio-sensors, and underwater sensor networks. This book can prove to be useful for academics and professionals interested in the various sub-fields of electronics and communication engineering.

An Introduction to Electronic Materials for Engineers

Author : Wei Gao
File Size : 59.17 MB
Format : PDF, Mobi
Download : 541
Read : 326
Download »
Presents an overview of various materials, such as conducting materials, semiconductors, magnetic materials, optical materials, dielectric materials, superconductors, thermoelectric materials and ionic materials. This title includes chapters on thin film electronic materials, organic electronic materials and nanostructured materials.

Ionizing Radiation Effects in Electronics

Author : Marta Bagatin
File Size : 47.40 MB
Format : PDF
Download : 864
Read : 1164
Download »
Ionizing Radiation Effects in Electronics: From Memories to Imagers delivers comprehensive coverage of the effects of ionizing radiation on state-of-the-art semiconductor devices. The book also offers valuable insight into modern radiation-hardening techniques. The text begins by providing important background information on radiation effects, their underlying mechanisms, and the use of Monte Carlo techniques to simulate radiation transport and the effects of radiation on electronics. The book then: Explains the effects of radiation on digital commercial devices, including microprocessors and volatile and nonvolatile memories—static random-access memories (SRAMs), dynamic random-access memories (DRAMs), and Flash memories Examines issues like soft errors, total dose, and displacement damage, together with hardening-by-design solutions for digital circuits, field-programmable gate arrays (FPGAs), and mixed-analog circuits Explores the effects of radiation on fiber optics and imager devices such as complementary metal-oxide-semiconductor (CMOS) sensors and charge-coupled devices (CCDs) Featuring real-world examples, case studies, extensive references, and contributions from leading experts in industry and academia, Ionizing Radiation Effects in Electronics: From Memories to Imagers is suitable both for newcomers who want to become familiar with radiation effects and for radiation experts who are looking for more advanced material or to make effective use of beam time.

High Speed Devices and Circuits with THz Applications

Author : Jung Han Choi
File Size : 88.48 MB
Format : PDF
Download : 163
Read : 420
Download »
Presenting the cutting-edge results of new device developments and circuit implementations, High-Speed Devices and Circuits with THz Applications covers the recent advancements of nano devices for terahertz (THz) applications and the latest high-speed data rate connectivity technologies from system design to integrated circuit (IC) design, providing relevant standard activities and technical specifications. Featuring the contributions of leading experts from industry and academia, this pivotal work: Discusses THz sensing and imaging devices based on nano devices and materials Describes silicon on insulator (SOI) multigate nanowire field-effect transistors (FETs) Explains the theory underpinning nanoscale nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs), simulation methods, and their results Explores the physics of the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT), as well as commercially available SiGe HBT devices and their applications Details aspects of THz IC design using standard silicon (Si) complementary metal-oxide-semiconductor (CMOS) devices, including experimental setups for measurements, detection methods, and more An essential text for the future of high-frequency engineering, High-Speed Devices and Circuits with THz Applications offers valuable insight into emerging technologies and product possibilities that are attractive in terms of mass production and compatibility with current manufacturing facilities.

Mobile Point of Care Monitors and Diagnostic Device Design

Author : Walter Karlen
File Size : 73.95 MB
Format : PDF, Kindle
Download : 845
Read : 554
Download »
Efficient mobile systems that allow for vital sign monitoring and disease diagnosis at the point of care can help combat issues such as rising healthcare costs, treatment delays in remote and resource-poor areas, and the global shortage of skilled medical personnel. Covering everything from sensors, systems, and software to integration, usability, and regulatory challenges, Mobile Point-of-Care Monitors and Diagnostic Device Design offers valuable insight into state-of-the-art technologies, research, and methods for designing personal diagnostic and ambulatory healthcare devices. Presenting the combined expertise of contributors from various fields, this multidisciplinary text: Gives an overview of the latest mobile health and point-of-care technologies Discusses portable diagnostics devices and sensors, including mobile-phone-based health systems Explores lab-on-chip systems as well as energy-efficient solutions for mobile point-of-care monitors Addresses computer vision and signal processing for real-time diagnostics Considers interface design for lay healthcare providers and home users Mobile Point-of-Care Monitors and Diagnostic Device Design provides important background information about the design process of mobile health and point-of-care devices, using practical examples to illustrate key aspects related to instrumentation, information processing, and implementation.

Metallic Spintronic Devices

Author : Xiaobin Wang
File Size : 27.30 MB
Format : PDF, Docs
Download : 904
Read : 881
Download »
Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devices Discusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modeling Explores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysis Investigates spintronic device write and read optimization in light of spintronic memristive effects Considers spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effects Proposes unique solutions for low-power spintronic device applications where memory is closely integrated with logic Metallic Spintronic Devices aims to equip anyone who is serious about metallic spintronic devices with up-to-date design, modeling, and processing knowledge. It can be used either by an expert in the field or a graduate student in course curriculum.