Search results for: microbial-polyesters

Microbial Polyesters

Author : Yoshiharu Doi
File Size : 31.5 MB
Format : PDF, ePub, Docs
Download : 443
Read : 1203
Download »
This is the first book to present a topical overview of the research and development of microbial polyesters. Comprehensive and amply illustrated, it covers the * biosynthesis * structure * properties * applications of these biodegradable and biocompatible thermoplastics. The book provides the reader with the necessary background to understand the nature and mechanism of biological polymerization. It unites aspects from both the biological and polymer sciences and is a typical modern example of the analysis of biological macromolecules.

Recent Advances in Biotechnology Volume 2 Microbial Biopolyester Production Performance and Processing Bioengineering Characterization and Sustainability

Author : Martin Koller
File Size : 71.11 MB
Format : PDF
Download : 109
Read : 944
Download »
Global plastic production is estimated to be over 300Mt annually. Most conventional plastics are predominantly produced from fossil fuels and are highly resistant to biodegradation, and only a small share of about 20% of spent plastics is believed to be recycled, which is a cause for environmental concern. Biodegradable plastics would solve this concern as they are a sustainable alternative, yet these do not even cover 5% of the global plastic market. Microbial polyhydroxyalkanoates (PHAs) are a versatile group of polyesters produced by nature as prokaryotic storage materials. PHAs can be produced through sustainable bioprocess engineering and have displayed remarkable flexibility in their physical and chemical properties. PHAs are the subject of several scientific papers and numerous PHA patents have also been filed, generating significant interest in the plastic production industry. To develop overall sustainable and efficient production processes, all bioprocess steps need to be thoroughly understood and accounted for. These processes start with the selection of suitable inexpensive raw materials (microbes and enzymes), optimizing the process engineering and process regime, and conclude with the enhancement of product recovery in terms of time, energy, and material input. Microbial Biopolyester Production, Performance and Processing: Bioengineering, Characterization, and Sustainability is a compilation of eight chapters covering bacterial polyesters, green plastics and PHAs from various angles. The contents of this volume focus on sustainable practices focus on the sustainability of processes that involve the synthesis and recycling of these meterials. The volume is a useful resource for bioprocess engineers, microbiologists, biotechnologists and chemical engineers interested in the basics of biodegradable plastic production.

Final Report

Author :
File Size : 69.76 MB
Format : PDF, ePub, Docs
Download : 958
Read : 1069
Download »
In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems--without cell debris removal--is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of useful products using this technology is to scale the technology from the 700-L pilot reactor to a small-scale production facility, with dedicated operation staff and engineering controls. In addition, we recommend that a market study be conducted as well as further product development for construction products that will utilize the unique properties of this bio-based material.

Microbial Polyesters for the 21st Century

Author : Michele Benjamin Kellerhals
File Size : 61.45 MB
Format : PDF, ePub, Mobi
Download : 460
Read : 1321
Download »

Renewable Resources for Functional Polymers and Biomaterials

Author : Peter Williams
File Size : 76.98 MB
Format : PDF, ePub, Mobi
Download : 630
Read : 610
Download »
This book details polysaccharides and other important biomacromolecules covering their source, production, structures, properties, and current and potential application in the fields of biotechnology and medicine. It includes a systematic discussion on the general strategies of isolation, separation and characterization of polysaccharides and proteins. Subsequent chapters are devoted to polysaccharides obtained from various sources, including botanical, algal, animal and microbial. In the area of botanical polysaccharides, separate chapters are devoted to the sources, structure, properties and medical applications of cellulose and its derivatives, starch and its derivatives, pectins, and exudate gums, notably gum arabic. Another chapter discusses the potential of hemicelluloses (xylans and xylan derivatives) as a new source of functional biopolymers for biomedical and industrial applications. The algal polysaccharide, alginate, has significant application in food, pharmaceuticals and the medical field, all of which are reviewed in a separate chapter. Polysaccharides of animal origin are included with separate chapters on the sources, production, biocompatibility, biodegradability and biomedical applications of chitin (chitosan) and hyaluronan. With the increasing knowledge and applications of genetic engineering there is also an introduction in the book to nucleic acid polymers, the genome research and genetic engineering. Proteins and protein conjugates are covered, with one chapter providing a general review of structural glycoproteins, fibronectin and laminin, together with their role in the promotion of cell adhesion in vascular grafts, implants and tissue engineering. Another chapter discusses general aspects of a number of industrial proteins, including casein, caseinates, whey protein, gluten and soy proteins, with emphasis on their medical applications, and with reference to the potential of bacterial proteins. Another natural polymer resource, microbial polyesters, although small compared with polysaccharides and proteins, is also gaining increasing interest in biomedical technology and other industrial sectors. One chapter, therefore, is devoted to microbial polyesters, with comprehensive coverage of their biosynthesis, properties, enzymic degradation and applications. By dealing with biopolymers at the molecular level, the book is aimed at the biomedical and wider materials science communities and provides an advanced overview of biopolymers at the graduate and postgraduate level. In addition it will appeal to both academic and industrial life scientists who are involved in research and development activities in the medical and biotechnology field.

Crystallization and Structure of Microbial Polyesters Carbohydrate based Polyamides and N polyurethanes

Author : Carlos Fernández López
File Size : 21.47 MB
Format : PDF, ePub, Docs
Download : 120
Read : 728
Download »

Desk Reference of Functional Polymers

Author : Reza Arshady
File Size : 83.63 MB
Format : PDF, ePub, Docs
Download : 677
Read : 1053
Download »
Discusses the synthesis, properties, and current and potential applications of a wide variety of functional polymers in four major areas: radiation effects and applications, opolelectronic properties and applications, chemical and physicochemical applications, and biomedical applications. Reviews the general synthetic methods for preparing functional polymers. Examines functional polymers with properties of interest in such fields as microlithography, photochemistry, nonlinear optics, electrical conductivity, chemical sensors, electron and energy transfer processes, polymeric liquid crystalline networks, chiral liquid crystalline polymers, solar energy utilization, floculation of minerals, catalysis, polymeric dental aids, polymer-drug conjugates, biocompatible polymer surfaces, and drug targeting by functional polymers.

Microbial Degradation of Polyesters

Author : Robert Donald Fields
File Size : 33.47 MB
Format : PDF, Mobi
Download : 600
Read : 1262
Download »

Recent Advances in Biotechnology Volume 1 Microbial Biopolyester Production Performance and Processing Microbiology Feedstocks and Metabolism

Author : Martin Koller
File Size : 83.73 MB
Format : PDF, Kindle
Download : 649
Read : 638
Download »
Global plastic production is estimated to be over 300Mt annually. Most conventional plastics are predominantly produced from fossil fuels and are highly resistant to biodegradation, and only a small share of about 20% of spent plastics is believed to be recycled, which is a cause for environmental concern. Biodegradable plastics would solve this concern as they are a sustainable alternative, yet these do not even cover 5% of the global plastic market. Microbial polyhydroxyalkanoates (PHAs) are a versatile group of polyesters produced by nature as prokaryotic storage materials. PHAs can be produced through sustainable bioprocess engineering and have displayed remarkable flexibility in their physical and chemical properties. PHAs are the subject of several scientific papers and numerous PHA patents have also been filed, generating significant interest in the plastic production industry. To develop overall sustainable and efficient production processes, all bioprocess steps need to be thoroughly understood and accounted for. These processes start with the selection of suitable inexpensive raw materials (microbes and enzymes), optimizing the process engineering and process regime, and conclude with the enhancement of product recovery in terms of time, energy, and material input. Microbial Biopolyester Production, Performance and Processing: Microbiology, Feedstocks, and Metabolism encompasses eight chapters that cover aspects of the microbiology and biotechnology of producing biodegradable plastics. The contents focus on the selection of powerful archaeal and eubacterial production strains, genetic engineering as a tool for optimized PHA production and inexpensive carbon sources for microbial cultures. The volume is a useful resource for bioprocess engineers, microbiologists, biotechnologists and chemical engineers interested in the basics of biodegradable plastic production. Recent Advances in Biotechnology is a book series comprising of peer-reviewed reference works and monographs that compile the latest developments in the field of biotechnology. Each volume has a thematic focus and features topical reviews written by experts. The series will highlight multidisciplinary perspectives to interested readers (biotechnologists, microbiologists, bioprocess engineers, agronomists, medical professionals, sustainability researchers etc.)

Rheological Studies of Thermal and Mechanical Degradation of Microbial Polyesters

Author : Robert P. Lyons
File Size : 43.88 MB
Format : PDF, Kindle
Download : 995
Read : 761
Download »

Metabolic Engineering

Author : Sang Yup Lee
File Size : 43.26 MB
Format : PDF, ePub, Docs
Download : 546
Read : 1244
Download »
Learn more about foundational and advanced topics in metabolic engineering in this comprehensive resource edited by leaders in the field Metabolic Engineering: Concepts and Applications delivers a one-stop resource for readers seeking a complete description of the concepts, models, and applications of metabolic engineering. This guide offers practical insights into the metabolic engineering of major cell lines, including E. Coli, Bacillus and Yarrowia Lipolytica, and organisms, including human, animal, and plant). The distinguished editors also offer readers resources on microbiome engineering and the use of metabolic engineering in bioremediation. Written in two parts, Metabolic Engineering begins with the essential models and strategies of the field, like Flux Balance Analysis, Quantitative Flux Analysis, and Proteome Constrained Models. It also provides an overview of topics like Pathway Design, Metabolomics, and Genome Editing of Bacteria and Eukarya. The second part contains insightful descriptions of the practical applications of metabolic engineering, including specific examples that shed light on the topics within. In addition to subjects like the metabolic engineering of animals, humans, and plants, you’ll learn more about: Metabolic engineering concepts and a historical perspective on their development The different modes of analysis, including flux balance analysis and quantitative flux analysis An illuminating and complete discussion of the thermodynamics of metabolic pathways The Genome architecture of E. coli, as well as genome editing of both bacteria and eukarya An in-depth treatment of the application of metabolic engineering techniques to organisms including corynebacterial, bacillus, and pseudomonas, and more Perfect for students of biotechnology, bioengineers, and biotechnologists, Metabolic Engineering: Concepts and Applications also has a place on the bookshelves of research institutes, biotechnological institutes and industry labs, and university libraries. It's comprehensive treatment of all relevant metabolic engineering concepts, models, and applications will be of use to practicing biotechnologists and bioengineers who wish to solidify their understanding of the field.

Microbial Applications Vol 2

Author : Vipin Chandra Kalia
File Size : 52.85 MB
Format : PDF
Download : 245
Read : 456
Download »
This contributed volume provides insights into multiple applications using microbes to promote productivity in agriculture, to produce biochemicals or to respond to challenges in biomedicine. It highlights the microbial production of nanocompounds with medical functionality alongside new anti-mycobacterial strategies, and introduces plant-growth-promoting Rhizobacteria as well as the correlation between biofilm formation and crop productivity. Further, the authors illustrate the green synthesis of biochemical compounds, such as hydroxamid acid or biosurfactants, using microbial and fungal enzymes. It inspires young researchers and experienced scientists in the field of microbiology to explore the combined use of green, white and red biotechnology for industrial purposes, which will be one of the central topics for future generations.

Integrated Biomaterials Science

Author : Rolando Barbucci
File Size : 39.75 MB
Format : PDF, ePub
Download : 887
Read : 972
Download »
Integrated Biomaterials Science provides an intriguing insight into the world of biomaterials. It explores the materials and technology which have brought advances in new biomaterials, highlighting the way in which modern biology and medicine are synergistically linked to other key scientific disciplines-physics, chemistry, and engineering. In doing so, Integrated Biomaterials Science contains chapters on tissue engineering and gene therapy, standards and parameters of biomaterials, applications and interactions within the industrial world, as well as potential aspects of patent regulations. Integrated Biomaterials Science serves as a comprehensive guide to understanding this dynamic field, yet is designed so that chapters may be read and understood independently, depending on the needs of the reader. Integrated Biomaterials Science is attractive to a broad audience interested in a deeper understanding of this evolving field, and serves as a key resource for researchers and students of biomaterials courses, providing all with an opportunity to probe further.

Metabolic Engineering

Author : Jens Høiriis Nielsen
File Size : 44.25 MB
Format : PDF, ePub, Docs
Download : 302
Read : 467
Download »
Metabolic engineering is a rapidly evolving field that is being applied for the optimization of many different industrial processes. In this issue of Advances in Biochemical Engineering/Biotechnology, developments in different areas of metabolic engineering are reviewed. The contributions discuss the application of metabolic engineering in the improvement of yield and productivity - illustrated by amino acid production and the production of novel compounds - in the production of polyketides and extension of the substrate range - and in the engineering of S. cerevisiae for xylose metabolism, and the improvement of a complex biotransformation process.

Biotechnology Products in Everyday Life

Author : Menka Khoobchandani
File Size : 23.24 MB
Format : PDF, ePub
Download : 155
Read : 317
Download »
This book explores a sampling of the most powerful and enterprising efforts to achieve biotechnological goals by means of various interdisciplinary approaches. From the fabrication of extremely small units to achieve specific objectives through nano-bio-technology, to devices with artificial intelligence, gene therapy for cerebrovascular anomalies, biodegradable plastics, the use of phyto-stem cells in cosmetology, CarT cell immune therapy, targeted therapies for cancer, 3D printed bones developed by the University of Wollongong in Australia, the sickle cell chip developed by IIT Bombay, and innovative sustainable energy solutions, the book includes a colorful spectrum of reviews on current and future biotech products. Gathering contributions by an international team of researchers, this book offers its audience, and particularly younger readers, revealing information on current and upcoming smart technologies.

Unsaturated Polyester Resins

Author : Sabu Thomas
File Size : 62.80 MB
Format : PDF, Docs
Download : 705
Read : 1249
Download »
Unsaturated Polyester Resins: Fundamentals, Design, Fabrication, and Applications explains the preparation, techniques and applications relating to the use of unsaturated polyester resin systems for blends, interpenetrating polymer networks (IPNs), gels, composites and nanocomposites, enabling readers to understand and utilize the improved material properties that UPRs facilitate. Chapters cover unsaturated polyester resins and their interaction at the macro, micro and nano levels, in-depth studies on the properties and analysis of UPR based materials, and the applications of UPR based composites, blends, IPNs and gels across a range of advanced commercial and industrial fields. This is a highly detailed source of information on unsaturated polyester resins, supporting academics, researchers and postgraduate students working with UPRs, polyesters, polymeric or composite materials, polymer chemistry, polymer physics, and materials science, as well as scientists, R&D professionals and engineers in industry. Covers the use of unsaturated polyester resin systems for blends, IPNs, gels, composites and nanocomposites Presents cutting-edge techniques for the analysis and improvement of properties of advanced UPR-based materials Unlocks the potential of unsaturated polyester resins in high-performance materials for a range of advanced applications

Textiles and Their Use in Microbial Protection

Author : Jiri Militky
File Size : 44.90 MB
Format : PDF, Mobi
Download : 681
Read : 1171
Download »
Textiles and Their Use in Microbial Protection: Focus on COVID-19 and Other Viruses provides readers with vital information about disinfection mechanisms used in textile applications in the fight against dangerous microbes and viruses. KEY FEATURES: Introduces the basics of textile materials used for medical applications Features key information on virology, characterization, indication, and passivation of COVID-19 Describes UV, photocatalysis, photooxidation, application of TiO2, copper-based viral inhibition, and activated carbon Discusses antiviral finishes for the protection against SARS-CoV-2, particle penetration in dense cotton fabrics under swollen state, and the impact of moisture on face masks and their designs Aimed at textile and materials engineers as well as readers in medical fields, this text offers a comprehensive view of fundamentals and solutions in the use of textiles for microbial protection.

Natural Polymers

Author : Ololade Olatunji
File Size : 74.64 MB
Format : PDF, ePub
Download : 599
Read : 1289
Download »
This book introduces the most recent innovations in natural polymer applications in the food, construction, electronics, biomedical, pharmaceutical, and engineering industries. The authors provide perspectives from their respective range of industries covering classification, extraction, modification, and application of natural polymers from various sources in nature. They discuss the techniques used in analysis of natural polymers in various systems incorporating natural polymers as well as their intrinsic properties.

Food Packaging

Author : Rui M. S. da Cruz
File Size : 46.57 MB
Format : PDF
Download : 862
Read : 1174
Download »
Food Packaging: Innovations and Shelf-life covers recently investigated developments in food packaging and their influence in food quality preservation, shelf-life extension, and simulation techniques. Additionally, the book discusses the environmental impact and sustainable solutions of food packaging. This book is divided into seven chapters, written by worldwide experts. The book is an ideal reference source for university students, food engineers and researchers from R&D laboratories working in the area of food science and technology. Professionals from institutions related to food packaging.

Novel Biodegradable Microbial Polymers

Author : E.A. Dawes
File Size : 35.16 MB
Format : PDF, ePub, Docs
Download : 559
Read : 1102
Download »
The NATO Advanced Research Workshop from which this book derives was conceived during Biotec-88, the Second Spanish Conference on Biotechnology, held at Barcelona in June 1988. The President of the Conference, Dr. Ricardo Guerrero, had arranged sessions on bacterial polymers which included lectures by five invited participants who, together with Dr. Guerrero, became the Organizing Committee for a projected meeting that would focus attention upon the increasing international importance of novel biodegradable polymers. The proposal found favour with the NATO Science Committee and, with Dr. R. Clinton Fuller and Dr. Robert W. Lenz as the co-Directors, Dr. Edwin A. Dawes as the Proceedings Editor, and Dr. Hans G. Schlegel, Dr. Alexander J.B. Zehnder and Dr. Ricardo Guerrero as members of the Organizing Committee, the meeting quickly took shape. To Dr. Guerrero we owe the happy choice of Sitges for the venue, a pleasant coastal resort 36 kilometres from Barcelona, which proved ideal. The sessions were held at the Palau de Maricel in appropriately impressive surroundings, and invaluable local support was provided by Mr. Jordi Mas-Castella and by Ms. Merce Piqueras. Much of the preparatory work fell upon the broad shoulders of Mr. Edward Knee, whose efforts are deeply appreciated. The Organizing Committee hopes that this Workshop will prove to be the first of a series which will aim to keep abreast of a rapidly expanding and exciting area of research that is highly relevant to environmental and industrial interests.