Search results for: mathematics-primer-for-physics-students-a

MATHEMATICS PRIMER FOR PHYSICS STUDENTS A

Author : ANDREW E. BLECHMAN
File Size : 53.15 MB
Format : PDF, Mobi
Download : 554
Read : 643
Download »

A Mathematical Primer on Quantum Mechanics

Author : Alessandro Teta
File Size : 43.37 MB
Format : PDF, Docs
Download : 691
Read : 375
Download »
This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.

A Primer for a Secret Shortcut to PDEs of Mathematical Physics

Author : Des McGhee
File Size : 28.32 MB
Format : PDF, Docs
Download : 301
Read : 218
Download »
​This book presents a concise introduction to a unified Hilbert space approach to the mathematical modelling of physical phenomena which has been developed over recent years by Picard and his co-workers. The main focus is on time-dependent partial differential equations with a particular structure in the Hilbert space setting that ensures well-posedness and causality, two essential properties of any reasonable model in mathematical physics or engineering.However, the application of the theory to other types of equations is also demonstrated. By means of illustrative examples, from the straightforward to the more complex, the authors show that many of the classical models in mathematical physics as well as more recent models of novel materials and interactions are covered, or can be restructured to be covered, by this unified Hilbert space approach. The reader should require only a basic foundation in the theory of Hilbert spaces and operators therein. For convenience, however, some of the more technical background requirements are covered in detail in two appendices The theory is kept as elementary as possible, making the material suitable for a senior undergraduate or master’s level course. In addition, researchers in a variety of fields whose work involves partial differential equations and applied operator theory will also greatly benefit from this approach to structuring their mathematical models in order that the general theory can be applied to ensure the essential properties of well-posedness and causality.

Principles of Mathematics

Author : Vladimir Lepetic
File Size : 43.31 MB
Format : PDF, Mobi
Download : 623
Read : 1218
Download »
Presents a uniquely balanced approach that bridges introductory and advanced topics in modern mathematics An accessible treatment of the fundamentals of modern mathematics, Principles of Mathematics: A Primer provides a unique approach to introductory andadvanced mathematical topics. The book features six main subjects, whichcan be studied independently or in conjunction with each other including: settheory; mathematical logic; proof theory; group theory; theory of functions; andlinear algebra. The author begins with comprehensive coverage of the necessary building blocks in mathematics and emphasizes the need to think abstractly and develop an appreciation for mathematical thinking. Maintaining a useful balance of introductory coverage and mathematical rigor, Principles of Mathematics: A Primer features: Detailed explanations of important theorems and their applications Hundreds of completely solved problems throughout each chapter Numerous exercises at the end of each chapter to encourage further exploration Discussions of interesting and provocative issues that spark readers’ curiosity and facilitate a better understanding and appreciation of the field of mathematics Principles of Mathematics: A Primer is an ideal textbook for upper-undergraduate courses in the foundations of mathematics and mathematical logic as well as for graduate-level courses related to physics, engineering, and computer science. The book is also a useful reference for readers interested in pursuing careers in mathematics and the sciences.

Aspects of Integrability of Differential Systems and Fields

Author : Costas J. Papachristou
File Size : 85.42 MB
Format : PDF, ePub, Docs
Download : 398
Read : 537
Download »
This book serves as an introduction to the concept of integrability as it applies to systems of differential equations as well as to vector-valued fields. The author focuses on specific aspects of integrability that are often encountered in a variety of problems in applied mathematics, physics and engineering. The following general cases of integrability are examined: (a) path-independence of line integrals of vector fields on the plane and in space; (b) integration of a system of ordinary differential equations by using first integrals; and (c) integrable systems of partial differential equations. Special topics include the integration of analytic functions and some elements from the geometric theory of differential systems. Certain more advanced subjects, such as Lax pairs and Bäcklund transformations, are also discussed. The book is written at an intermediate level for educational purposes. The presentation is as simple as the topics allow, often sacrificing mathematical rigor in favor of pedagogical efficiency.

A Primer on Hilbert Space Theory

Author : Carlo Alabiso
File Size : 72.69 MB
Format : PDF
Download : 505
Read : 1220
Download »
This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors’s lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.

A Primer on String Theory

Author : Volker Schomerus
File Size : 24.54 MB
Format : PDF, ePub, Docs
Download : 855
Read : 906
Download »
Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.

Quantum Mechanics and Quantum Field Theory

Author : Jonathan Dimock
File Size : 56.6 MB
Format : PDF, Kindle
Download : 501
Read : 426
Download »
Explaining the concepts of quantum mechanics and quantum field theory in a precise mathematical language, this textbook is an ideal introduction for graduate students in mathematics, helping to prepare them for further studies in quantum physics. The textbook covers topics that are central to quantum physics: non-relativistic quantum mechanics, quantum statistical mechanics, relativistic quantum mechanics and quantum field theory. There is also background material on analysis, classical mechanics, relativity and probability. Each topic is explored through a statement of basic principles followed by simple examples. Around 100 problems throughout the textbook help readers develop their understanding.

Lectures on Quantum Mechanics

Author : Philip L. Bowers
File Size : 21.21 MB
Format : PDF, ePub, Docs
Download : 590
Read : 540
Download »
A leisurely but mathematically honest presentation of quantum mechanics for graduate students in mathematics with an interest in physics.

A Mathematica Primer for Physicists

Author : Jim Napolitano
File Size : 72.12 MB
Format : PDF, Kindle
Download : 774
Read : 1087
Download »
"...an excellent text for either a short course or self-study... Professor Napolitano has figured out what students really need, and found a way to deliver it... I have found everything he writes to be worthy of my serious attention..." —Peter D. Persans, Professor of Physics and Director, Center for Integrated Electronics, Rensselaer Polytechnic Institute Learn how to use Mathematica quickly for basic problems in physics. The author introduces all the key techniques and then shows how they’re applied using common examples. Chapters cover elementary mathematics concepts, differential and integral calculus, differential equations, vectors and matrices, data analysis, random number generation, animation, and visualization. Written in an appealing, conversational style Presents important concepts within the framework of Mathematics Gives examples from frequently encountered physics problems Explains problem-solving in a step-by-step fashion Jim Napolitano is professor and chair in the Department of Physics at Temple University. He is the author of other textbooks, including co-author with Alistair Rae of Quantum Mechanics, Sixth Edition, also published by Taylor & Francis / CRC Press.