Search results for: machine-learning-for-healthcare

Machine Learning with Health Care Perspective

Author : Vishal Jain
File Size : 87.67 MB
Format : PDF, Kindle
Download : 219
Read : 574
Download »
This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.

Machine Learning for Healthcare Technologies

Author : David A. Clifton
File Size : 26.33 MB
Format : PDF
Download : 109
Read : 673
Download »
This book brings together chapters on the state-of-the-art in machine learning (ML) as it applies to the development of patient-centred technologies, with a special emphasis on 'big data' and mobile data. With contributions from international experts from prestigious institutions it describes cutting edge research and makes accessible, for the first time, the latest in Bayesian non-parametrics for healthcare. This is one of the key frontiers in ML, and its application to healthcare will serve as a useful tutorial guide for both ML-focussed and biomedical engineers. There are very few books that are accessible in this key area of ML, and absolutely none on the use of such technologies for mobile healthcare - despite a substantial amount of research that has taken place in this field at key biomedical and clinical sites across the world. Topics covered include an introduction to machine learning in healthcare; discovering trends in patient physiology; Bayesian time-series analysis for patient monitoring; mobile healthcare for the developing world; massively-multiscale machine learning for healthcare; time-series clustering for understanding patient data; machine learning for home healthcare; fusing genomics and healthcare data; machine learning for mental health; mobile healthcare with analysis-on-a-chip; Bayesian analytics for medical data fusion. This is an important book for academic and industrial researchers working in healthcare technologies, biomedical engineering and machine learning. It will also be of interest to advanced students working in these areas and commercial developers of computing based healthcare applications.

Machine Learning for Healthcare

Author : Rashmi Agrawal
File Size : 60.58 MB
Format : PDF, ePub, Mobi
Download : 401
Read : 1240
Download »
Machine Learning for Healthcare: Handling and Managing Data provides in-depth information about handling and managing healthcare data through machine learning methods. This book expresses the long-standing challenges in healthcare informatics and provides rational explanations of how to deal with them. Machine Learning for Healthcare: Handling and Managing Data provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of machine learning applications. These are illustrated in a case study which examines how chronic disease is being redefined through patient-led data learning and the Internet of Things. This text offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare. Readers will discover the ethical implications of machine learning in healthcare and the future of machine learning in population and patient health optimization. This book can also help assist in the creation of a machine learning model, performance evaluation, and the operationalization of its outcomes within organizations. It may appeal to computer science/information technology professionals and researchers working in the area of machine learning, and is especially applicable to the healthcare sector. The features of this book include: A unique and complete focus on applications of machine learning in the healthcare sector. An examination of how data analysis can be done using healthcare data and bioinformatics. An investigation of how healthcare companies can leverage the tapestry of big data to discover new business values. An exploration of the concepts of machine learning, along with recent research developments in healthcare sectors.

Machine Learning and AI for Healthcare

Author : Arjun Panesar
File Size : 43.65 MB
Format : PDF, ePub, Docs
Download : 490
Read : 154
Download »
Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll Learn Gain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agents Who This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.

AI and Machine Learning for Healthcare

Author : Aileen Nielsen
File Size : 51.69 MB
Format : PDF, ePub
Download : 318
Read : 373
Download »
"Artificial intelligence (AI) and machine learning (ML) in healthcare comprise a rapidly expanding and very promising field. The marriage of technology and health has the potential to empower medical professionals and patients alike, while drastically cutting the cost of healthcare. Using a measured no-hype approach, this video will help technology entrepreneurs, product managers, and health care executives understand what can be done with AI and ML in healthcare today and what concepts are most crucial to producing valuable applications in the near future."--Resource description page.

Machine Learning for Healthcare Analytics Projects

Author : Eduonix Learning Solutions
File Size : 38.90 MB
Format : PDF, Mobi
Download : 423
Read : 490
Download »
Create real-world machine learning solutions using NumPy, pandas, matplotlib, and scikit-learn Key Features Develop a range of healthcare analytics projects using real-world datasets Implement key machine learning algorithms using a range of libraries from the Python ecosystem Accomplish intermediate-to-complex tasks by building smart AI applications using neural network methodologies Book Description Machine Learning (ML) has changed the way organizations and individuals use data to improve the efficiency of a system. ML algorithms allow strategists to deal with a variety of structured, unstructured, and semi-structured data. Machine Learning for Healthcare Analytics Projects is packed with new approaches and methodologies for creating powerful solutions for healthcare analytics. This book will teach you how to implement key machine learning algorithms and walk you through their use cases by employing a range of libraries from the Python ecosystem. You will build five end-to-end projects to evaluate the efficiency of Artificial Intelligence (AI) applications for carrying out simple-to-complex healthcare analytics tasks. With each project, you will gain new insights, which will then help you handle healthcare data efficiently. As you make your way through the book, you will use ML to detect cancer in a set of patients using support vector machines (SVMs) and k-Nearest neighbors (KNN) models. In the final chapters, you will create a deep neural network in Keras to predict the onset of diabetes in a huge dataset of patients. You will also learn how to predict heart diseases using neural networks. By the end of this book, you will have learned how to address long-standing challenges, provide specialized solutions for how to deal with them, and carry out a range of cognitive tasks in the healthcare domain. What you will learn Explore super imaging and natural language processing (NLP) to classify DNA sequencing Detect cancer based on the cell information provided to the SVM Apply supervised learning techniques to diagnose autism spectrum disorder (ASD) Implement a deep learning grid and deep neural networks for detecting diabetes Analyze data from blood pressure, heart rate, and cholesterol level tests using neural networks Use ML algorithms to detect autistic disorders Who this book is for Machine Learning for Healthcare Analytics Projects is for data scientists, machine learning engineers, and healthcare professionals who want to implement machine learning algorithms to build smart AI applications. Basic knowledge of Python or any programming language is expected to get the most from this book.

Demystifying Big Data and Machine Learning for Healthcare

Author : Prashant Natarajan
File Size : 53.15 MB
Format : PDF, Kindle
Download : 185
Read : 155
Download »
Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Machine Learning in Healthcare Informatics

Author : Sumeet Dua
File Size : 58.10 MB
Format : PDF, ePub, Mobi
Download : 915
Read : 797
Download »
The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

Computational Intelligence for Machine Learning and Healthcare Informatics

Author : Rajshree Srivastava
File Size : 63.71 MB
Format : PDF
Download : 555
Read : 309
Download »
This book presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. It is intended to provide a unique compendium of current and emerging machine learning paradigms for healthcare informatics, reflecting the diversity, complexity, and depth and breadth of this multi-disciplinary area.

Machine Learning for Healthcare Applications

Author : Sachi Nandan Mohanty
File Size : 85.15 MB
Format : PDF, ePub, Mobi
Download : 200
Read : 1220
Download »
When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Machine Intelligence for Healthcare

Author : Francis X. Campion
File Size : 66.88 MB
Format : PDF, ePub, Docs
Download : 420
Read : 1253
Download »
Machine Intelligence for Healthcare is a must read for physician leaders, health insurance executives, clinical researchers, public health officials, data scientists and software engineers seeking to understand this pivotal innovation in the information revolution in healthcare. MI for Healthcare provides a detailed introduction of Machine Intelligence, then takes the reader on a journey through the basics of machine learning, topological data analysis and applications of machine intelligence software for healthcare and life sciences. Over 20 case studies cover topics related to clinical variation analysis, hospital clinical pathways, population health management, genetic analysis, precision medicine, healthcare revenue cycle, and payment integrity. The book includes a detailed introduction of the mathematics of topology and concepts of machine learning algorithms. This provides an understanding for the central role which machine intelligence software is now playing in the emergence of the "learning healthcare system" and success in the new world of value-based healthcare delivery.

Machine Learning for Healthcare

Author : John Schrom
File Size : 36.77 MB
Format : PDF
Download : 420
Read : 586
Download »
As storage and collection technology has become cheaper and more precise, companies and individuals are eager to extract relevant information from large data sets. This book focuses on the tools of machine learning and statistics in a practical manner, with lots of case studies specific to the challenges of working with healthcare data. By exploring each problem in depth, you’ll build your intuitive understanding of machine learning without requiring a strong background in advanced mathematics. You’ll be able to recognize when your problems match traditional problems closely, and apply classical tools from statistics to your problems, while working within the legal bounds of the US healthcare system.

Deep Learning Techniques for Biomedical and Health Informatics

Author : Sujata Dash
File Size : 82.39 MB
Format : PDF, ePub
Download : 446
Read : 565
Download »
This book presents a collection of state-of-the-art approaches for deep-learning-based biomedical and health-related applications. The aim of healthcare informatics is to ensure high-quality, efficient health care, and better treatment and quality of life by efficiently analyzing abundant biomedical and healthcare data, including patient data and electronic health records (EHRs), as well as lifestyle problems. In the past, it was common to have a domain expert to develop a model for biomedical or health care applications; however, recent advances in the representation of learning algorithms (deep learning techniques) make it possible to automatically recognize the patterns and represent the given data for the development of such model. This book allows new researchers and practitioners working in the field to quickly understand the best-performing methods. It also enables them to compare different approaches and carry forward their research in an important area that has a direct impact on improving the human life and health. It is intended for researchers, academics, industry professionals, and those at technical institutes and R&D organizations, as well as students working in the fields of machine learning, deep learning, biomedical engineering, health informatics, and related fields.

Applications of Artificial Intelligence and Machine Learning in Healthcare

Author : Hassan Alamoudi
File Size : 70.97 MB
Format : PDF, ePub, Docs
Download : 145
Read : 1111
Download »
Artificial Intelligence (AI) is becoming a ubiquitous term that is used in many fields of research or the popular culture. Among these fields that was affected by this hype is the healthcare sector. Along with its subdomain, Machine Learning (ML), they established an environment of interest in the promises of machines versus humans capabilities. Though artificial intelligence applications in healthcare such as interpreting ECGs could date back to the mid of the twentieth century, the promises of AI still at its beginning when it comes to new breakthroughs. This is due to the transformation into a digital world and new advancements in the processing capabilities. Computer vision has contributed the most to the healthcare sector where it can leverage doctors and practitioners with automated classification and annotations as a preparing step. This kind of mechanism is the best suited for applications of AI in healthcare. However, the amount of data in other forms such as textual or lab results is exceeding the force power. While a solution could be to use machines to learn and propose solutions, the results could be catastrophic and human lives are on stake. So, explainable AI could be beneficial where it analyzes and makes predictions that can be trusted by the users. The study here is conducted on cardiovascular patients dataset to predict the presence or absence of the disease. Classifications techniques used include Nave Bayes, Logistic Regression, Decision Trees, Support Vector Machines, and Artificial Neural Networks. The Logistic regression model achieved the best Area under the curve. Moreover, an extension of the previous studies discussed is conducted to explain the model and to show how models of AI can be trusted and not used as black-boxes.

Data Driven Approaches for Healthcare

Author : Chengliang Yang
File Size : 46.49 MB
Format : PDF, Docs
Download : 372
Read : 468
Download »
Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem. Key Features: Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codes Provides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizers Presents descriptive data driven methods for the high utilizer population Identifies a best-fitting linear and tree-based regression model to account for patients’ acute and chronic condition loads and demographic characteristics

Machine Learning Applications Using Python

Author : Puneet Mathur
File Size : 64.33 MB
Format : PDF, Docs
Download : 940
Read : 1193
Download »
Gain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you’ll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine learning is used in finance, healthcare, and retail, but also work through practical case studies where machine learning has been implemented. Machine Learning Applications Using Python is divided into three sections, one for each of the domains (healthcare, finance, and retail). Each section starts with an overview of machine learning and key technological advancements in that domain. You’ll then learn more by using case studies on how organizations are changing the game in their chosen markets. This book has practical case studies with Python code and domain-specific innovative ideas for monetizing machine learning. What You Will Learn Discover applied machine learning processes and principles Implement machine learning in areas of healthcare, finance, and retail Avoid the pitfalls of implementing applied machine learning Build Python machine learning examples in the three subject areas Who This Book Is For Data scientists and machine learning professionals.

Applications of Deep Learning and Big IoT on Personalized Healthcare Services

Author : Wason, Ritika
File Size : 61.20 MB
Format : PDF, ePub, Docs
Download : 773
Read : 718
Download »
Healthcare is an industry that has seen great advancements in personalized services through big data analytics. Despite the application of smart devices in the medical field, the mass volume of data that is being generated makes it challenging to correctly diagnose patients. This has led to the implementation of precise algorithms that can manage large amounts of information and successfully use smart living in medical environments. Professionals worldwide need relevant research on how to successfully implement these smart technologies within their own personalized healthcare processes. Applications of Deep Learning and Big IoT on Personalized Healthcare Services is a pivotal reference source that provides a collection of innovative research on the analytical methods and applications of smart algorithms for the personalized treatment of patients. While highlighting topics including cognitive computing, natural language processing, and supply chain optimization, this book is ideally designed for network designers, analysts, technology specialists, medical professionals, developers, researchers, academicians, and post-graduate students seeking relevant information on smart developments within individualized healthcare.

Machine Learning Applications in Healthcare

Author :
File Size : 46.95 MB
Format : PDF
Download : 428
Read : 1177
Download »

Artificial Intelligence in Healthcare

Author : Adam Bohr
File Size : 74.82 MB
Format : PDF, Kindle
Download : 539
Read : 452
Download »
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. Highlights different data techniques in healthcare data analysis, including machine learning and data mining Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks Includes applications and case studies across all areas of AI in healthcare data

Healthcare Analytics Made Simple

Author : Vikas (Vik) Kumar
File Size : 33.87 MB
Format : PDF, ePub, Mobi
Download : 800
Read : 401
Download »
Add a touch of data analytics to your healthcare systems and get insightful outcomes Key Features Perform healthcare analytics with Python and SQL Build predictive models on real healthcare data with pandas and scikit-learn Use analytics to improve healthcare performance Book Description In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples. What you will learn Gain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processes Use SQL and Python to analyze data Measure healthcare quality and provider performance Identify features and attributes to build successful healthcare models Build predictive models using real-world healthcare data Become an expert in predictive modeling with structured clinical data See what lies ahead for healthcare analytics Who this book is for Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare.