Keeping Up with the Quants

Your Guide to Understanding and Using Analytics

DOWNLOAD NOW »

Author: Thomas H. Davenport,Jinho Kim

Publisher: Harvard Business Press

ISBN: 1422187268

Category: Business & Economics

Page: 240

View: 5401

Why Everyone Needs Analytical Skills Welcome to the age of data. No matter your interests (sports, movies, politics), your industry (finance, marketing, technology, manufacturing), or the type of organization you work for (big company, nonprofit, small start-up)—your world is awash with data. As a successful manager today, you must be able to make sense of all this information. You need to be conversant with analytical terminology and methods and able to work with quantitative information. This book promises to become your “quantitative literacy" guide—helping you develop the analytical skills you need right now in order to summarize data, find the meaning in it, and extract its value. In Keeping Up with the Quants, authors, professors, and analytics experts Thomas Davenport and Jinho Kim offer practical tools to improve your understanding of data analytics and enhance your thinking and decision making. You’ll gain crucial skills, including: • How to formulate a hypothesis • How to gather and analyze relevant data • How to interpret and communicate analytical results • How to develop habits of quantitative thinking • How to deal effectively with the “quants” in your organization Big data and the analytics based on it promise to change virtually every industry and business function over the next decade. If you don’t have a business degree or if you aren’t comfortable with statistics and quantitative methods, this book is for you. Keeping Up with the Quants will give you the skills you need to master this new challenge—and gain a significant competitive edge.

Fundamentals of Machine Learning for Predictive Data Analytics

Algorithms, Worked Examples, and Case Studies

DOWNLOAD NOW »

Author: John D. Kelleher,Brian Mac Namee,Aoife D'Arcy

Publisher: MIT Press

ISBN: 0262029448

Category: Computers

Page: 624

View: 2022

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Big Data Analytics for Entrepreneurial Success

DOWNLOAD NOW »

Author: Sedkaoui, Soraya

Publisher: IGI Global

ISBN: 152257610X

Category: Business & Economics

Page: 300

View: 4425

In a resolutely practical and data-driven project universe, the digital age changed the way data is collected, stored, analyzed, visualized and protected, transforming business opportunities and strategies. It is important for today’s organizations and entrepreneurs to implement a robust data strategy and industrialize a set of “data-driven” solutions to utilize big data analytics to its fullest potential. Big Data Analytics for Entrepreneurial Success provides emerging perspectives on the theoretical and practical aspects of data analysis tools and techniques within business applications. Featuring coverage on a broad range of topics such as algorithms, data collection, and machine learning, this publication provides concrete examples and case studies of successful uses of data-driven projects as well as the challenges and opportunities of generating value from data using analytics. It is ideally designed for entrepreneurs, researchers, business owners, managers, graduate students, academicians, software developers, and IT professionals seeking current research on the essential tools and technologies for organizing, analyzing, and benefiting from big data.

Sport Business Analytics

Using Data to Increase Revenue and Improve Operational Efficiency

DOWNLOAD NOW »

Author: C. Keith Harrison,Scott Bukstein

Publisher: CRC Press

ISBN: 1315350629

Category: Computers

Page: 236

View: 3024

Developing and implementing a systematic analytics strategy can result in a sustainable competitive advantage within the sport business industry. This timely and relevant book provides practical strategies to collect data and then convert that data into meaningful, value-added information and actionable insights. Its primary objective is to help sport business organizations utilize data-driven decision-making to generate optimal revenue from such areas as ticket sales and corporate partnerships. To that end, the book includes in-depth case studies from such leading sports organizations as the Orlando Magic, Tampa Bay Buccaneers, Duke University, and the Aspire Group. The core purpose of sport business analytics is to convert raw data into information that enables sport business professionals to make strategic business decisions that result in improved company financial performance and a measurable and sustainable competitive advantage. Readers will learn about the role of big data and analytics in: Ticket pricing Season ticket member retention Fan engagement Sponsorship valuation Customer relationship management Digital marketing Market research Data visualization. This book examines changes in the ticketing marketplace and spotlights innovative ticketing strategies used in various sport organizations. It shows how to engage fans with social media and digital analytics, presents techniques to analyze engagement and marketing strategies, and explains how to utilize analytics to leverage fan engagement to enhance revenue for sport organizations. Filled with insightful case studies, this book benefits both sports business professionals and students. The concluding chapter on teaching sport analytics further enhances its value to academics.

Data Analytics and Big Data

DOWNLOAD NOW »

Author: Soraya Sedkaoui

Publisher: John Wiley & Sons

ISBN: 1786303264

Category: Computers

Page: 220

View: 6369

The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application.

Machine Learning

Hands-On for Developers and Technical Professionals

DOWNLOAD NOW »

Author: Jason Bell

Publisher: John Wiley & Sons

ISBN: 1118889495

Category: Mathematics

Page: 408

View: 1757

Dig deep into the data with a hands-on guide to machinelearning Machine Learning: Hands-On for Developers and TechnicalProfessionals provides hands-on instruction and fully-codedworking examples for the most common machine learning techniquesused by developers and technical professionals. The book contains abreakdown of each ML variant, explaining how it works and how it isused within certain industries, allowing readers to incorporate thepresented techniques into their own work as they follow along. Acore tenant of machine learning is a strong focus on datapreparation, and a full exploration of the various types oflearning algorithms illustrates how the proper tools can help anydeveloper extract information and insights from existing data. Thebook includes a full complement of Instructor's Materials tofacilitate use in the classroom, making this resource useful forstudents and as a professional reference. At its core, machine learning is a mathematical, algorithm-basedtechnology that forms the basis of historical data mining andmodern big data science. Scientific analysis of big data requires aworking knowledge of machine learning, which forms predictionsbased on known properties learned from training data. MachineLearning is an accessible, comprehensive guide for thenon-mathematician, providing clear guidance that allows readersto: Learn the languages of machine learning including Hadoop,Mahout, and Weka Understand decision trees, Bayesian networks, and artificialneural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficientmachine learning By learning to construct a system that can learn from data,readers can increase their utility across industries. Machinelearning sits at the core of deep dive data analysis andvisualization, which is increasingly in demand as companiesdiscover the goldmine hiding in their existing data. For the techprofessional involved in data science, Machine Learning:Hands-On for Developers and Technical Professionals providesthe skills and techniques required to dig deeper.