Search results for: intrusion-detection-a-machine-learning-approach

Intrusion Detection

Author : Zhenwei Yu
File Size : 69.20 MB
Format : PDF, Docs
Download : 180
Read : 1179
Download »
Introduces the concept of intrusion detection, discusses various approaches for intrusion detection systems (IDS), and presents the architecture and implementation of IDS. This title also includes the performance comparison of various IDS via simulation.

Network Intrusion Detection using Deep Learning

Author : Kwangjo Kim
File Size : 60.8 MB
Format : PDF, Kindle
Download : 878
Read : 1167
Download »
This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book. Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity.

Deep Learning Approach for Intrusion Detection System IDS in the Internet of Things IoT Network Using Gated Recurrent Neural Networks GRU

Author : Manoj Kumar Putchala
File Size : 48.62 MB
Format : PDF, ePub, Mobi
Download : 693
Read : 445
Download »
The Internet of Things (IoT) is a complex paradigm where billions of devices are connected to a network. These connected devices form an intelligent system of systems that share the data without human-to-computer or human-to-human interaction. These systems extract meaningful data that can transform human lives, businesses, and the world in significant ways. However, the reality of IoT is prone to countless cyber-attacks in the extremely hostile environment like the internet. The recent hack of 2014 Jeep Cherokee, iStan pacemaker, and a German steel plant are a few notable security breaches. To secure an IoT system, the traditional high-end security solutions are not suitable, as IoT devices are of low storage capacity and less processing power. Moreover, the IoT devices are connected for longer time periods without human intervention. This raises a need to develop smart security solutions which are light-weight, distributed and have a high longevity of service. Rather than per-device security for numerous IoT devices, it is more feasible to implement security solutions for network data. The artificial intelligence theories like Machine Learning and Deep Learning have already proven their significance when dealing with heterogeneous data of various sizes. To substantiate this, in this research, we have applied concepts of Deep Learning and Transmission Control Protocol/Internet Protocol (TCP/IP) to build a light-weight distributed security solution with high durability for IoT network security. First, we have examined the ways of improving IoT architecture and proposed a light-weight and multi-layered design for an IoT network. Second, we have analyzed the existingapplications of Machine Learning and Deep Learning to the IoT and Cyber-Security. Third, we have evaluated deep learning's Gated Recurrent Neural Networks (LSTM and GRU) on the DARPA/KDD Cup '99 intrusion detection data set for each layer in the designed architecture. Finally, from the evaluated metrics, we have proposed the best neural network design suitable for the IoT Intrusion Detection System. With an accuracy of 98.91% and False Alarm Rate of 0.76 %, this unique research outperformed the performance results of existing methods over the KDD Cup '99 dataset. For this first time in the IoT research, the concepts of Gated Recurrent Neural Networks are applied for the IoT security.

Machine learning in intrusion detection

Author : Yihua Liao
File Size : 29.82 MB
Format : PDF, ePub, Docs
Download : 768
Read : 1012
Download »
Detection of anomalies in data is one of the fundamental machine learning tasks. Anomaly detection provides the core technology for a broad spectrum of security-centric applications. In this dissertation, we examine various aspects of anomaly based intrusion detection in computer security. First, we present a new approach to learn program behavior for intrusion detection. Text categorization techniques are adopted to convert each process to a vector and calculate the similarity between two program activities. Then the k-nearest neighbor classifier is employed to classify program behavior as normal or intrusive. We demonstrate that our approach is able to effectively detect intrusive program behavior while a low false positive rate is achieved. Second, we describe an adaptive anomaly detection framework that is de- signed to handle concept drift and online learning for dynamic, changing environments. Through the use of unsupervised evolving connectionist systems, normal behavior changes are efficiently accommodated while anomalous activities can still be recognized. We demonstrate the performance of our adaptive anomaly detection systems and show that the false positive rate can be significantly reduced.

SCADA Security

Author : Abdulmohsen Almalawi
File Size : 67.80 MB
Format : PDF, ePub, Mobi
Download : 118
Read : 197
Download »
Examines the design and use of Intrusion Detection Systems (IDS) to secure Supervisory Control and Data Acquisition (SCADA) systems Cyber-attacks on SCADA systems—the control system architecture that uses computers, networked data communications, and graphical user interfaces for high-level process supervisory management—can lead to costly financial consequences or even result in loss of life. Minimizing potential risks and responding to malicious actions requires innovative approaches for monitoring SCADA systems and protecting them from targeted attacks. SCADA Security: Machine Learning Concepts for Intrusion Detection and Prevention is designed to help security and networking professionals develop and deploy accurate and effective Intrusion Detection Systems (IDS) for SCADA systems that leverage autonomous machine learning. Providing expert insights, practical advice, and up-to-date coverage of developments in SCADA security, this authoritative guide presents a new approach for efficient unsupervised IDS driven by SCADA-specific data. Organized into eight in-depth chapters, the text first discusses how traditional IT attacks can also be possible against SCADA, and describes essential SCADA concepts, systems, architectures, and main components. Following chapters introduce various SCADA security frameworks and approaches, including evaluating security with virtualization-based SCADAVT, using SDAD to extract proximity-based detection, finding a global and efficient anomaly threshold with GATUD, and more. This important book: Provides diverse perspectives on establishing an efficient IDS approach that can be implemented in SCADA systems Describes the relationship between main components and three generations of SCADA systems Explains the classification of a SCADA IDS based on its architecture and implementation Surveys the current literature in the field and suggests possible directions for future research SCADA Security: Machine Learning Concepts for Intrusion Detection and Prevention is a must-read for all SCADA security and networking researchers, engineers, system architects, developers, managers, lecturers, and other SCADA security industry practitioners.

Analysis of Machine Learning Techniques for Intrusion Detection System A Review

Author : Asghar Ali Shah
File Size : 62.15 MB
Format : PDF, Docs
Download : 416
Read : 855
Download »
Security is a key issue to both computer and computer networks. Intrusion detection System (IDS) is one of the major research problems in network security. IDSs are developed to detect both known and unknown attacks. There are many techniques used in IDS for protecting computers and networks from network based and host based attacks. Various Machine learning techniques are used in IDS. This study analyzes machine learning techniques in IDS. It also reviews many related studies done in the period from 2000 to 2012 and it focuses on machine learning techniques. Related studies include single, hybrid, ensemble classifiers, baseline and datasets used.

Machine Learning Approaches in Cyber Security Analytics

Author : Tony Thomas
File Size : 74.60 MB
Format : PDF, Docs
Download : 193
Read : 1201
Download »
This book introduces various machine learning methods for cyber security analytics. With an overwhelming amount of data being generated and transferred over various networks, monitoring everything that is exchanged and identifying potential cyber threats and attacks poses a serious challenge for cyber experts. Further, as cyber attacks become more frequent and sophisticated, there is a requirement for machines to predict, detect, and identify them more rapidly. Machine learning offers various tools and techniques to automate and quickly predict, detect, and identify cyber attacks.

Trends in Deep Learning Methodologies

Author : Vincenzo Piuri
File Size : 50.5 MB
Format : PDF
Download : 973
Read : 184
Download »
Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models. Provides insights into the theory, algorithms, implementation and the application of deep learning techniques Covers a wide range of applications of deep learning across smart healthcare and smart engineering Investigates the development of new models and how they can be exploited to find appropriate solutions

Application of Machine Learning and Deep Learning for Intrusion Detection System

Author : Nivedaaaiyer Ananda Subramaniam
File Size : 50.66 MB
Format : PDF, ePub, Docs
Download : 124
Read : 702
Download »
In today's world, a computer is highly exposed to attacks. In here, I try to build a predictive model to identify if the connection coming is an attack or genuine. Machine learning is that part of computer science in which instead of programming a machine we provide the ability to learn. Knowingly or unknowingly machine learning has become a part of our day to day lives. It could be in many ways like predicting stock market or image recognition while uploading a picture in Facebook and so on. Deep learning is a new concept which is trending these days, which moves a step towards the main aim of Machine Learning which is artificial intelligence. This machine learning/artificial intelligence can be used to make intrusion detection in a network more intelligent. We use different machine learning techniques including deep learning to figure out which approach is best for intrusion detection. To do this, we take a network intrusion dataset by Lincoln Labs who created an artificial set up to imitate U.S. Air Force LAN and get the TCP dumps generated. This also includes simulations of various types of attacks. We apply different machine learning algorithms on this data. And choose the machine learning algorithm which is most efficient to build a predictive model for intrusion detection. Now to the same dataset, we will apply Deep Learning mechanisms to build a predictive model with the algorithm that works the best for this data, after comparing the results generated by various deep learning algorithms. We build tool for each of the models (i.e. machine learning and deep learning). Now, the two tools one generated by machine learning and other by deep learning will be compared for accuracy.

AI 2005 Advances in Artificial Intelligence

Author : Shichao Zhang
File Size : 59.91 MB
Format : PDF, ePub
Download : 864
Read : 1002
Download »
This book constitutes the refereed proceedings of the 18th Australian Joint Conference on Artificial Intelligence, AI 2005, held in Sydney, Australia in December 2005. The 77 revised full papers and 119 revised short papers presented together with the abstracts of 3 keynote speeches were carefully reviewed and selected from 535 submissions. The papers are catgorized in three broad sections, namely: AI foundations and technologies, computational intelligence, and AI in specialized domains. Particular topics addressed by the papers are logic and reasoning, machine learning, game theory, robotic technology, data mining, neural networks, fuzzy theory and algorithms, evolutionary computing, Web intelligence, decision making, pattern recognition, agent technology, and AI applications.

Advances in Intelligent Computing

Author : De-Shuang Huang
File Size : 21.32 MB
Format : PDF, Kindle
Download : 297
Read : 1257
Download »
The two-volume set LNCS 3644 and LNCS 3645 constitute the refereed proceedings of the International Conference on Intelligent Computing, ICIC 2005, held in Hefei, China, in August 2005. The program committee selected 215 carefully revised full papers for presentation in two volumes from over 2000 submissions, based on rigorous peer reviews. The first volume includes all the contributions related with perceptual and pattern recognition, informatics theories and applications computational neuroscience and bioscience, models and methods, and learning systems. The second volume collects the papers related with genomics and proteomics, adaptation and decision making, applications and hardware, and other applications.

Handbook of Research on Machine and Deep Learning Applications for Cyber Security

Author : Ganapathi, Padmavathi
File Size : 88.78 MB
Format : PDF
Download : 435
Read : 940
Download »
As the advancement of technology continues, cyber security continues to play a significant role in today’s world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.

Machine Learning for Application Layer Intrusion Detection

Author : Konrad
File Size : 46.88 MB
Format : PDF, ePub
Download : 942
Read : 1200
Download »
This book is concerned with the automatic detection of unknown attacks in network communication. Based on concepts of machine learning, a framework for self-learning intrusion detection is proposed which enables accurate and efficient identification of attacks in the application layer of network communication. The book is a doctoral thesis and targets researchers and postgraduate students in the area of computer security and machine learning.

Advances in Machine Learning II

Author : Jacek Koronacki
File Size : 73.33 MB
Format : PDF, ePub
Download : 208
Read : 1142
Download »
This is the second volume of a large two-volume editorial project we wish to dedicate to the memory of the late Professor Ryszard S. Michalski who passed away in 2007. He was one of the fathers of machine learning, an exciting and relevant, both from the practical and theoretical points of view, area in modern computer science and information technology. His research career started in the mid-1960s in Poland, in the Institute of Automation, Polish Academy of Sciences in Warsaw, Poland. He left for the USA in 1970, and since then had worked there at various universities, notably, at the University of Illinois at Urbana – Champaign and finally, until his untimely death, at George Mason University. We, the editors, had been lucky to be able to meet and collaborate with Ryszard for years, indeed some of us knew him when he was still in Poland. After he started working in the USA, he was a frequent visitor to Poland, taking part at many conferences until his death. We had also witnessed with a great personal pleasure honors and awards he had received over the years, notably when some years ago he was elected Foreign Member of the Polish Academy of Sciences among some top scientists and scholars from all over the world, including Nobel prize winners. Professor Michalski’s research results influenced very strongly the development of machine learning, data mining, and related areas. Also, he inspired many established and younger scholars and scientists all over the world. We feel very happy that so many top scientists from all over the world agreed to pay the last tribute to Professor Michalski by writing papers in their areas of research. These papers will constitute the most appropriate tribute to Professor Michalski, a devoted scholar and researcher. Moreover, we believe that they will inspire many newcomers and younger researchers in the area of broadly perceived machine learning, data analysis and data mining. The papers included in the two volumes, Machine Learning I and Machine Learning II, cover diverse topics, and various aspects of the fields involved. For convenience of the potential readers, we will now briefly summarize the contents of the particular chapters.

Network Intrusion Detection and Prevention

Author : Ali A. Ghorbani
File Size : 72.52 MB
Format : PDF, Kindle
Download : 348
Read : 509
Download »
Network Intrusion Detection and Prevention: Concepts and Techniques provides detailed and concise information on different types of attacks, theoretical foundation of attack detection approaches, implementation, data collection, evaluation, and intrusion response. Additionally, it provides an overview of some of the commercially/publicly available intrusion detection and response systems. On the topic of intrusion detection system it is impossible to include everything there is to say on all subjects. However, we have tried to cover the most important and common ones. Network Intrusion Detection and Prevention: Concepts and Techniques is designed for researchers and practitioners in industry. This book is suitable for advanced-level students in computer science as a reference book as well.

Machine Learning and Data Mining in Pattern Recognition

Author : Petra Perner
File Size : 31.26 MB
Format : PDF, ePub, Docs
Download : 188
Read : 1149
Download »
Ever wondered what the state of the art is in machine learning and data mining? Well, now you can find out. This book constitutes the refereed proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition, held in Leipzig, Germany, in July 2007. The 66 revised full papers presented together with 1 invited talk were carefully reviewed and selected from more than 250 submissions. The papers are organized in topical sections.

Advances in Machine Learning and Computational Intelligence

Author : Srikanta Patnaik
File Size : 65.67 MB
Format : PDF, Mobi
Download : 619
Read : 1296
Download »

Machine Learning in Cyber Trust

Author : Jeffrey J. P. Tsai
File Size : 24.39 MB
Format : PDF, Docs
Download : 939
Read : 422
Download »
Many networked computer systems are far too vulnerable to cyber attacks that can inhibit their functioning, corrupt important data, or expose private information. Not surprisingly, the field of cyber-based systems is a fertile ground where many tasks can be formulated as learning problems and approached in terms of machine learning algorithms. This book contains original materials by leading researchers in the area and covers applications of different machine learning methods in the reliability, security, performance, and privacy issues of cyber space. It enables readers to discover what types of learning methods are at their disposal, summarizing the state-of-the-practice in this significant area, and giving a classification of existing work. Those working in the field of cyber-based systems, including industrial managers, researchers, engineers, and graduate and senior undergraduate students will find this an indispensable guide in creating systems resistant to and tolerant of cyber attacks.

Proceedings of ELM 2014 Volume 2

Author : Jiuwen Cao
File Size : 52.23 MB
Format : PDF, ePub, Mobi
Download : 804
Read : 953
Download »
This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote research and development of “learning without iterative tuning”. The book covers theories, algorithms and applications of ELM. It gives the readers a glance of the most recent advances of ELM.

Theoretical and Mathematical Foundations of Computer Science

Author : Qihai Zhou
File Size : 77.63 MB
Format : PDF, ePub
Download : 223
Read : 225
Download »
This book constitutes the refereed post-proceedings of the Second International Conference on Theoretical and Mathematical Foundations of Computer Science, ICTMF 2011, held in Singapore in May 2011. The conference was held together with the Second International Conference on High Performance Networking, Computing, and Communication systems, ICHCC 2011, which proceedings are published in CCIS 163. The 84 revised selected papers presented were carefully reviewed and selected for inclusion in the book. The topics covered range from computational science, engineering and technology to digital signal processing, and computational biology to game theory, and other related topices.