Introduction to Relation Algebras

Relation Algebras


Author: Steven Givant

Publisher: Springer

ISBN: 3319652354

Category: Mathematics

Page: 572

View: 1874

The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly suited to independent study, and provide an unparalleled opportunity to learn from one of the leading authorities in the field. Collecting, curating, and illuminating over 75 years of progress since Tarski's seminal work in 1941, this textbook in two volumes offers a landmark, unified treatment of the increasingly relevant field of relation algebras. Clear and insightful prose guides the reader through material previously only available in scattered, highly-technical journal articles. Students and experts alike will appreciate the work as both a textbook and invaluable reference for the community.

Relation Algebras by Games


Author: Robin Hirsch,Ian Hodkinson

Publisher: Gulf Professional Publishing

ISBN: 9780444509321

Category: Mathematics

Page: 691

View: 6461

In part 2, games are introduced, and used to axiomatise various classes of algebras. Part 3 discusses approximations to representability, using bases, relation algebra reducts, and relativised representations. Part 4 presents some constructions of relation algebras, including Monk algebras and the 'rainbow construction', and uses them to show that various classes of representable algebras are non-finitely axiomatisable or even non-elementary. Part 5 shows that the representability problem for finite relation algebras is undecidable, and then in contrast proves some finite base property results. Part 6 contains a condensed summary of the book, and a list of problems. There are more than 400 exercises. P The book is generally self-contained on relation algebras and on games, and introductory text is scattered throughout. Some familiarity with elementary aspects of first-order logic and set theory is assumed, though many of the definitions are given.-

Decision Problems for Equational Theories of Relation Algebras


Author: H. Andréka,Steven R. Givant,I. Németi

Publisher: American Mathematical Soc.

ISBN: 0821805959

Category: Mathematics

Page: 126

View: 5647

This work presents a systematic study of decision problems for equational theories of algebras of binary relations (relation algebras). For example, an easily applicable but deep method, based on von Neumann's coordinatization theorem, is developed for establishing undecidability results. The method is used to solve several outstanding problems posed by Tarski. In addition, the complexity of intervals of equational theories of relation algebras with respect to questions of decidability is investigated. Using ideas that go back to Jonsson and Lyndon, the authors show that such intervals can have the same complexity as the lattice of subsets of the set of the natural numbers. Finally, some new and quite interesting examples of decidable equational theories are given. The methods developed in the monograph show promise of broad applicability. They provide researchers in algebra and logic with a new arsenal of techniques for resolving decision questions in various domains of algebraic logic.

Algebraic Theories

A Categorical Introduction to General Algebra


Author: J. Adámek,J. Rosický,E. M. Vitale

Publisher: Cambridge University Press

ISBN: 1139491881

Category: Mathematics

Page: N.A

View: 8586

Algebraic theories, introduced as a concept in the 1960s, have been a fundamental step towards a categorical view of general algebra. Moreover, they have proved very useful in various areas of mathematics and computer science. This carefully developed book gives a systematic introduction to algebra based on algebraic theories that is accessible to both graduate students and researchers. It will facilitate interactions of general algebra, category theory and computer science. A central concept is that of sifted colimits - that is, those commuting with finite products in sets. The authors prove the duality between algebraic categories and algebraic theories and discuss Morita equivalence between algebraic theories. They also pay special attention to one-sorted algebraic theories and the corresponding concrete algebraic categories over sets, and to S-sorted algebraic theories, which are important in program semantics. The final chapter is devoted to finitary localizations of algebraic categories, a recent research area.

From Peirce to Skolem

A Neglected Chapter in the History of Logic


Author: Geraldine Brady

Publisher: Elsevier

ISBN: 9780080532028

Category: Computers

Page: 480

View: 7001

This book is an account of the important influence on the development of mathematical logic of Charles S. Peirce and his student O.H. Mitchell, through the work of Ernst Schröder, Leopold Löwenheim, and Thoralf Skolem. As far as we know, this book is the first work delineating this line of influence on modern mathematical logic.

Handbook of Categorical Algebra: Volume 1, Basic Category Theory


Author: Francis Borceux

Publisher: Cambridge University Press

ISBN: 9780521441780

Category: Mathematics

Page: 345

View: 8668

First of a 3-volume work giving a detailed account of what should be known by all working in, or using category theory. Volume 1 covers basic concepts.

Introduction to Octonion and Other Non-Associative Algebras in Physics


Author: Susumo Okubo

Publisher: Cambridge University Press

ISBN: 9780521472159

Category: Science

Page: 136

View: 9174

In this book, the author applies non-associative algebras to physics. Okubo covers topics ranging from algebras of observables in quantum mechanics and angular momentum and octonions to division algebra, triple-linear products and YangSHBaxter equations. He also discusses the non-associative gauge theoretic reformulation of Einstein's general relativity theory. Much of the material found in this volume is not available in other works. The book will therefore be of great interest to graduate students and research scientists in physics and mathematics.

From Kant to Hilbert Volume 1

A Source Book in the Foundations of Mathematics


Author: William Bragg Ewald

Publisher: OUP Oxford

ISBN: 9780191523090

Category: Mathematics

Page: 678

View: 3354

Immanuel Kant's Critique of Pure Reason is widely taken to be the starting point of the modern period of mathematics while David Hilbert was the last great mainstream mathematician to pursue important nineteenth cnetury ideas. This two-volume work provides an overview of this important era of mathematical research through a carefully chosen selection of articles. They provide an insight into the foundations of each of the main branches of mathematics—algebra, geometry, number theory, analysis, logic and set theory—with narratives to show how they are linked. Classic works by Bolzano, Riemann, Hamilton, Dedekind, and Poincare are reproduced in reliable translations and many selections from writers such as Gauss, Cantor, Kronecker and Zermelo are here translated for the first time. The collection is an invaluable source for anyone wishing to gain an understanding of the foundation of modern mathematics.

Introduction to Abstract Algebra, Third Edition


Author: T.A. Whitelaw

Publisher: CRC Press

ISBN: 9780751401479

Category: Mathematics

Page: 256

View: 3832

The first and second editions of this successful textbook have been highly praised for their lucid and detailed coverage of abstract algebra. In this third edition, the author has carefully revised and extended his treatment, particularly the material on rings and fields, to provide an even more satisfying first course in abstract algebra.