Integral Transforms and Their Applications, Third Edition

DOWNLOAD NOW »

Author: Lokenath Debnath,Dambaru Bhatta

Publisher: CRC Press

ISBN: 1482223570

Category: Mathematics

Page: 818

View: 5725

Integral Transforms and Their Applications, Third Edition covers advanced mathematical methods for many applications in science and engineering. The book is suitable as a textbook for senior undergraduate and first-year graduate students and as a reference for professionals in mathematics, engineering, and applied sciences. It presents a systematic development of the underlying theory as well as a modern approach to Fourier, Laplace, Hankel, Mellin, Radon, Gabor, wavelet, and Z transforms and their applications. New to the Third Edition New material on the historical development of classical and modern integral transforms New sections on Fourier transforms of generalized functions, the Poisson summation formula, the Gibbs phenomenon, and the Heisenberg uncertainty principle Revised material on Laplace transforms and double Laplace transforms and their applications New examples of applications in mechanical vibrations, electrical networks, quantum mechanics, integral and functional equations, fluid mechanics, mathematical statistics, special functions, and more New figures that facilitate a clear understanding of physical explanations Updated exercises with solutions, tables of integral transforms, and bibliography Through numerous examples and end-of-chapter exercises, this book develops readers’ analytical and computational skills in the theory and applications of transform methods. It provides accessible working knowledge of the analytical methods and proofs required in pure and applied mathematics, physics, and engineering, preparing readers for subsequent advanced courses and research in these areas.

Integral Transforms and Their Applications

DOWNLOAD NOW »

Author: Brian Davies

Publisher: Springer Science & Business Media

ISBN: 1468492837

Category: Mathematics

Page: 370

View: 9095

This is a substantially updated, extended and reorganized third edition of an introductory text on the use of integral transforms. Chapter I is largely new, covering introductory aspects of complex variable theory. Emphasis is on the development of techniques and the connection between properties of transforms and the kind of problems for which they provide tools. Around 400 problems are accompanied in the text. It will be useful for graduate students and researchers working in mathematics and physics.

Wavelet Transforms and Their Applications

DOWNLOAD NOW »

Author: Lokenath Debnath,Firdous Ahmad Shah

Publisher: Springer

ISBN: 0817684182

Category: Technology & Engineering

Page: 553

View: 8120

This textbook is an introduction to wavelet transforms and accessible to a larger audience with diverse backgrounds and interests in mathematics, science, and engineering. Emphasis is placed on the logical development of fundamental ideas and systematic treatment of wavelet analysis and its applications to a wide variety of problems as encountered in various interdisciplinary areas. Topics and Features: * This second edition heavily reworks the chapters on Extensions of Multiresolution Analysis and Newlands’s Harmonic Wavelets and introduces a new chapter containing new applications of wavelet transforms * Uses knowledge of Fourier transforms, some elementary ideas of Hilbert spaces, and orthonormal systems to develop the theory and applications of wavelet analysis * Offers detailed and clear explanations of every concept and method, accompanied by carefully selected worked examples, with special emphasis given to those topics in which students typically experience difficulty * Includes carefully chosen end-of-chapter exercises directly associated with applications or formulated in terms of the mathematical, physical, and engineering context and provides answers to selected exercises for additional help Mathematicians, physicists, computer engineers, and electrical and mechanical engineers will find Wavelet Transforms and Their Applications an exceptionally complete and accessible text and reference. It is also suitable as a self-study or reference guide for practitioners and professionals.

Integral Transforms and Their Applications

DOWNLOAD NOW »

Author: Lokenath Debnath,Dambaru Bhatta

Publisher: CRC Press

ISBN: 9781420010916

Category: Mathematics

Page: 728

View: 1212

Keeping the style, content, and focus that made the first edition a bestseller, Integral Transforms and their Applications, Second Edition stresses the development of analytical skills rather than the importance of more abstract formulation. The authors provide a working knowledge of the analytical methods required in pure and applied mathematics, physics, and engineering. The second edition includes many new applications, exercises, comments, and observations with some sections entirely rewritten. It contains more than 500 worked examples and exercises with answers as well as hints to selected exercises. The most significant changes in the second edition include: New chapters on fractional calculus and its applications to ordinary and partial differential equations, wavelets and wavelet transformations, and Radon transform Revised chapter on Fourier transforms, including new sections on Fourier transforms of generalized functions, Poissons summation formula, Gibbs phenomenon, and Heisenbergs uncertainty principle A wide variety of applications has been selected from areas of ordinary and partial differential equations, integral equations, fluid mechanics and elasticity, mathematical statistics, fractional ordinary and partial differential equations, and special functions A broad spectrum of exercises at the end of each chapter further develops analytical skills in the theory and applications of transform methods and a deeper insight into the subject A systematic mathematical treatment of the theory and method of integral transforms, the book provides a clear understanding of the subject and its varied applications in mathematics, applied mathematics, physical sciences, and engineering.

An Introduction to Laplace Transforms and Fourier Series

DOWNLOAD NOW »

Author: Phil Dyke

Publisher: Springer Science & Business Media

ISBN: 9781852330156

Category: Mathematics

Page: 250

View: 2798

This introduction to Laplace transforms and Fourier series is aimed at second year students in applied mathematics. It is unusual in treating Laplace transforms at a relatively simple level with many examples. Mathematics students do not usually meet this material until later in their degree course but applied mathematicians and engineers need an early introduction. Suitable as a course text, it will also be of interest to physicists and engineers as supplementary material.

Transforms and Applications Handbook

DOWNLOAD NOW »

Author: Alexander D. Poularikas

Publisher: CRC Press

ISBN: 9781420066531

Category: Mathematics

Page: 911

View: 4921

Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field.

Hilbert Spaces with Applications

DOWNLOAD NOW »

Author: Lokenath Debnath,Piotr Mikusiński

Publisher: Academic Press

ISBN: 0122084381

Category: Mathematics

Page: 580

View: 8840

Building on the success of the two previous editions, Introduction to Hilbert Spaces with Applications, Third Edition, offers an overview of the basic ideas and results of Hilbert space theory and functional analysis. It acquaints students with the Lebesgue integral, and includes an enhanced presentation of results and proofs. Students and researchers will benefit from the wealth of revised examples in new, diverse applications as they apply to optimization, variational and control problems, and problems in approximation theory, nonlinear instability, and bifurcation. The text also includes a popular chapter on wavelets that has been completely updated. Students and researchers agree that this is the definitive text on Hilbert Space theory. Updated chapter on wavelets Improved presentation on results and proof Revised examples and updated applications Completely updated list of references

Analytic Functions Integral Transforms Differential Equations

DOWNLOAD NOW »

Author: Filippo Gazzola,Franco Tomarelli,Maurizio Zanotti

Publisher: Società Editrice Esculapio

ISBN: 887488561X

Category: Mathematics

Page: 396

View: 9425

Differential equations play a relevant role in many disciplines and provide powerful tools for analysis and modeling in applied sciences. The book contains several classical and modern methods for the study of ordinary and partial differential equations. A broad space is reserved to Fourier and Laplace transforms together with their applications to the solution of boundary value and/or initial value problems for differential equations. Basic prerequisites concerning analytic functions of complex variable and Lp spaces are synthetically presented in the first two chapters. Techniques based on integral transforms and Fourier series are presented in specific chapters, first in the easier framework of integrable functions and later in the general framework of distributions. The less elementary distributional context allows to deal also with differential equations with highly irregular data and pulse signals. The theory is introduced concisely, while learning of miscellaneous methods is achieved step-by-step through the proposal of many exercises of increasing difficulty. Additional recap exercises are collected in dedicated sections. Several tables for easy reference of main formulas are available at the end of the book. The presentation is oriented mainly to students of Schools in Engineering, Sciences and Economy. The partition of various topics in several self-contained and independent sections allows an easy splitting in at least two didactic modules: one at undergraduate level, the other at graduate level. This text is the English translation of the Third Edition of the Italian book “Analisi Complessa, Trasformate, Equazioni Differenziali" published by Esculapio in 2015.

Nonlinear Partial Differential Equations for Scientists and Engineers

DOWNLOAD NOW »

Author: Lokenath Debnath

Publisher: Springer Science & Business Media

ISBN: 9780817682651

Category: Mathematics

Page: 860

View: 2020

The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, improves on an already highly complete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide.