Search results for: information-theory-of-molecular-systems

Information Theory of Molecular Systems

Author : Roman F. Nalewajski
File Size : 74.73 MB
Format : PDF, Docs
Download : 544
Read : 764
Download »
As well as providing a unified outlook on physics, Information Theory (IT) has numerous applications in chemistry and biology owing to its ability to provide a measure of the entropy/information contained within probability distributions and criteria of their information "distance" (similarity) and independence. Information Theory of Molecular Systems applies standard IT to classical problems in the theory of electronic structure and chemical reactivity. The book starts by introducing the basic concepts of modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT), followed by an outline of the main ideas and techniques of IT, including several illustrative applications to molecular systems. Coverage includes information origins of the chemical bond, unbiased definition of molecular fragments, adequate entropic measures of their internal (intra-fragment) and external (inter-fragment) bond-orders and valence-numbers, descriptors of their chemical reactivity, and information criteria of their similarity and independence. Information Theory of Molecular Systems is recommended to graduate students and researchers interested in fresh ideas in the theory of electronic structure and chemical reactivity. ·Provides powerful tools for tackling both classical and new problems in the theory of the molecular electronic structure and chemical reactivity ·Introduces basic concepts of the modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT) ·Outlines main ideas and techniques of Information Theory

Advances in the Theory of Atomic and Molecular Systems

Author : Piotr Piecuch
File Size : 69.58 MB
Format : PDF, ePub, Docs
Download : 853
Read : 873
Download »
Advances in the Theory of Atomic and Molecular Systems, is a collection of contributions presenting recent theoretical and computational developments that provide new insights into the structure, properties, and behavior of a variety of atomic and molecular systems. This volume (subtitled: Conceptual and Computational Advances in Quantum Chemistry) focuses on electronic structure theory and its foundations. This volume is an invaluable resource for faculty, graduate students, and researchers interested in theoretical and computational chemistry and physics, physical chemistry and chemical physics, molecular spectroscopy, and related areas of science and engineering.

Research Methodologies and Practical Applications of Chemistry

Author : Lionello Pogliani
File Size : 24.89 MB
Format : PDF, ePub, Docs
Download : 512
Read : 862
Download »
This new volume, Research Methodologies and Practical Applications of Chemistry, presents a detailed analysis of current experimental and theoretical approaches surrounding chemical science. With an emphasis on multidisciplinary as well as interdisciplinary applications, the book extensively reviews fundamental principles and presents recent research to help show logical connections between the theory and application of modern chemistry concepts. It also emphasizes the behavior of materials from the molecular point of view. The burgeoning field of chemistry and chemical science has led to many recent technological innovations and discoveries. Understanding the impact of these technologies on business, science, and industry is an important first step in developing applications for a variety of settings and contexts. The aim of this book is to present research that has transformed this discipline and aided its advancement. The book examines the strengths and future potential of chemical technologies in a variety of industries.

Mathematics Applied to Engineering in Action

Author : Nazmul Islam
File Size : 74.75 MB
Format : PDF, Kindle
Download : 862
Read : 746
Download »
Mathematics Applied to Engineering in Action: Advanced Theories, Methods, and Models focuses on material relevant to solving the kinds of mathematical problems regularly confronted by engineers. This new volume explains how an engineer should properly define the physical and mathematical problem statements, choose the computational approach, and solve the problem by a proven reliable approach. It presents the theoretical background necessary for solving problems, including definitions, rules, formulas, and theorems on the particular theme. The book aims to apply advanced mathematics using real-world problems to illustrate mathematical ideas. This approach emphasizes the relevance of mathematics to engineering problems, helps to motivate the reader, and gives examples of mathematical concepts in a context familiar to the research students. The volume is intended for professors and instructors, scientific researchers, students, and industry professionals. It will help readers to choose the most appropriate mathematical modeling method to solve engineering problems.

Applications of Density Functional Theory to Chemical Reactivity

Author : Mihai V. Putz
File Size : 56.48 MB
Format : PDF, ePub
Download : 521
Read : 335
Download »
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer For all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.

Perspectives in Electronic Structure Theory

Author : Roman F. Nalewajski
File Size : 67.27 MB
Format : PDF, ePub, Mobi
Download : 883
Read : 706
Download »
The understanding in science implies insights from several different points of view. Alternative modern outlooks on electronic structure of atoms and molecules, all rooted in quantum mechanics, are presented in a single text. Together these complementary perspectives provide a deeper understanding of the localization of electrons and bonds, the origins of chemical interaction and reactivity behavior, the interaction between the geometric and electronic structure of molecules, etc. In the opening two parts the basic principles and techniques of the contemporary computational and conceptual quantum chemistry are presented, within both the wave-function and electron-density theories. This background material is followed by a discussion of chemical concepts, including stages of the bond-formation processes, chemical valence and bond-multiplicity indices, the hardness/softness descriptors of molecules and reactants, and general chemical reactivity/stability principles. The insights from Information Theory, the basic elements of which are briefly introduced, including the entropic origins and Orbital Communication Theory of the chemical bond, are the subject of Part IV. The importance of the non-additive (interference) information tools in exploring patterns of chemical bonds and their covalent and ionic components will be emphasized.

Information Decomposition of Target Effects from Multi Source Interactions

Author : Joseph Lizier
File Size : 41.37 MB
Format : PDF, Docs
Download : 355
Read : 381
Download »
This book is a printed edition of the Special Issue "Information Decomposition of Target Effects from Multi-Source Interactions" that was published in Entropy

Conceptual Density Functional Theory and Its Application in the Chemical Domain

Author : Nazmul Islam
File Size : 22.17 MB
Format : PDF
Download : 412
Read : 742
Download »
In this book, new developments based on conceptual density functional theory (CDFT) and its applications in chemistry are discussed. It also includes discussion of some applications in corrosion and conductivity and synthesis studies based on CDFT. The electronic structure principles—such as the electronegativity equalization principle, the hardness equalization principle, the electrophilicity equalization principle, and the nucleophilicity equalization principle, along studies based on these electronic structure principles—are broadly explained. In recent years some novel methodologies have been developed in the field of CDFT. These methodologies have been used to explore mutual relationships between the descriptors of CDFT, namely electronegativity, hardness, etc. The mutual relationship between the electronegativity and the hardness depend on the electronic configuration of the neutral atomic species. The volume attempts to cover almost all such methodology. Conceptual Density Function Theory and Its Application in the Chemical Domain will be an appropriate guide for research students as well as the supervisors in PhD programs. It will also be valuable resource for inorganic chemists, physical chemists, and quantum chemists. The reviews, research articles, short communications, etc., covered by this book will be appreciated by theoreticians as well as experimentalists.

Chemical Reactivity Theory

Author : Pratim Kumar Chattaraj
File Size : 36.38 MB
Format : PDF
Download : 457
Read : 258
Download »
In the 1970s, Density Functional Theory (DFT) was borrowed from physics and adapted to chemistry by a handful of visionaries. Now chemical DFT is a diverse and rapidly growing field, its progress fueled by numerous developing practical descriptors that make DFT as useful as it is vast. With 34 chapters written by 65 eminent scientists from 13 different countries, Chemical Reactivity Theory: A Density Functional View represents the true collaborative spirit and excitement of purpose engendered by the study and use of DFT. This work instructs readers on how concepts from DFT can be used to describe, understand, and predict chemical reactivity. Prior knowledge is not required as early chapters, written by the field’s original pioneers, cover basic ground-state DFT and its extensions to time-dependent systems, excited states, and spin-polarized molecules. While the text is accessible to senior undergraduate or beginning graduate students, experienced researchers are certain to find interesting new insights in the perspectives presented by these seasoned experts. This remarkable one-of-a-kind resource— Provides authoritative accounts on aspects of the theory of chemical reactivity Describes various global reactivity descriptors, such as electronegativity, hardness, and electrophilicity Introduces and analyzes the usefulness of local reactivity descriptors such as Fukui, shape, and electron localization functions Offers an in-depth analysis of how chemical reactivity changes during different physicochemical processes or in the presence of external perturbations The book covers a gamut of related topics such as methods for determining atoms-in-molecules, population analysis, electrostatic potential, molecular quantum similarity, aromaticity, and biological activity. It also discusses the role of reactivity concepts in industrial and other practical applications. Whether you are searching for new products or new research projects, this is the ultimate guide for understanding chemical reactivity.

Advances in Quantum Chemistry

Author :
File Size : 37.68 MB
Format : PDF, ePub, Mobi
Download : 930
Read : 265
Download »
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This series provides a one-stop resource for following progress in this interdisciplinary area. Publishes articles, invited reviews and proceedings of major international conferences and workshops Written by leading international researchers in quantum and theoretical chemistry Highlights important interdisciplinary developments

Infochemistry

Author : Konrad Szacilowski
File Size : 25.6 MB
Format : PDF, ePub, Mobi
Download : 500
Read : 964
Download »
Infochemistry: Information Processing at the Nanoscale, defines a new field of science, and describes the processes, systems and devices at the interface between chemistry and information sciences. The book is devoted to the application of molecular species and nanostructures to advanced information processing. It includes the design and synthesis of suitable materials and nanostructures, their characterization, and finally applications of molecular species and nanostructures for information storage and processing purposes. Divided into twelve chapters; the first three chapters serve as an introduction to the basic concepts of digital information processing, its development, limitations and finally introduces some alternative concepts for prospective technologies. Chapters four and five discuss traditional low-dimensional metals and semiconductors and carbon nanostructures respectively, while further chapters discuss Photoelectrochemical photocurrent switching and related phenomena and self-organization and self-assembly. Chapters eight, nine and ten discuss information processing at the molecular level, and eleven describes information processing in natural systems. The book concludes with a discussion of the future prospects for the field. Further topics: Traditional electronic device development is rapidly approaching a limit, so molecular scale information processing is critical in order to meet increasing demand for high computational power Characterizes chemical systems not according to their chemical nature, but according to their role as prospective information technology elements Covers the application of molecular species and nanostructures as molecular scale logic gates, switches, memories, and complex computing devices This book will be of particular interest to researchers in nanoelectronics, organic electronics, optoelectronics, chemistry and materials science.

Frontiers of Quantum Chemistry

Author : Marek J. Wójcik
File Size : 21.46 MB
Format : PDF, ePub
Download : 964
Read : 677
Download »
The purpose of this book is to convey to the worldwide scientific community the rapid and enthusiastic progress of state-of-the-art quantum chemistry. Quantum chemistry continues to grow with remarkable success particularly due to rapid progress in supercomputers. The usefulness of quantum chemistry is almost limitless. Its application covers not only physical chemistry but also organic and inorganic chemistry, physics, and life sciences. This book deals with all of these topics. Frontiers of Quantum Chemistry is closely related to the symposium of the same name held at Kwansei Gakuin University at Nishinomiya, Japan, in November 2015. The book's contributors, however, include not only invited speakers at the symposium but also many other distinguished scientists from wide areas of quantum chemistry around the world.

Information Theory Models of Instabilities in Critical Systems

Author : Rodrick Wallace
File Size : 74.57 MB
Format : PDF, Docs
Download : 153
Read : 1047
Download »
The book is a unique exploration of a spectrum of unexpected analogs to psychopathologies likely to afflict real-time critical systems, written by a specialist in the epidemiology of mental disorders. The purpose of this book is to develop a set of information-theoretic statistical tools for analyzing the instabilities of real-time cognitive systems at those varying scales and levels of organization, with special focus on high level machine function. The book should be of particular interest to both industry and academic scientists, and government regulators, concerned with driverless cars on intelligent roads. Many of the same concerns also afflict high-end automated weapons systems. The book should appeal to students, researchers, and industrial and governmental administrators facing the design, operation, and maintenance of real time critical systems ranging across manufacturing facilities, transportation, finance, and military operations.

Advances in Quantum Chemistry

Author : John R. Sabin
File Size : 68.22 MB
Format : PDF, Mobi
Download : 756
Read : 911
Download »
Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field that falls between the historically established areas of mathematics, physics, chemistry, and biology. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area. Advances in Quantum Chemistry, Volume 51 deals with various aspects of mathematical versus chemical applications. Some parts belong to established scientific domains, where technical progress has been crucial for the development of modern quantum chemistry as well as the quantification problem in spectral resonance analysis. The first chapter in the volume, concerns the calculation of molecular electronic structure to high accuracy, using a variety of one and two-body schemes in the coupled cluster family of methods. Chapter 2 is devoted to Angular Momentum Diagrams. In chapters 3 and 4, the autors portray Chemical Graph Theory (CGT). Advances quantum mechanical signal processing through the fast Padé transform (FPT) are covered in Chapter 5. The concluding chapter gives a mathematical view of molecular equilibria using a Density-Functional Theory (DFT) description. Publishes articles, invited reviews and proceedings of major international conferences and workshops Compiled by the leading international researchers in quantum and theoretical chemistry Highlights the important, interdisciplinary developments

Concepts and Methods in Modern Theoretical Chemistry

Author : Swapan Kumar Ghosh
File Size : 28.21 MB
Format : PDF, ePub
Download : 811
Read : 664
Download »
Concepts and Methods in Modern Theoretical Chemistry: Electronic Structure and Reactivity, the first book in a two-volume set, focuses on the structure and reactivity of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, this book offers chapters written by experts in their fields. It enables readers to learn how concepts from ab initio quantum chemistry and density functional theory (DFT) can be used to describe, understand, and predict electronic structure and chemical reactivity. This book covers a wide range of subjects, including discussions on the following topics: DFT, particularly the functional and conceptual aspects Excited states, molecular electrostatic potentials, and intermolecular interactions General theoretical aspects and application to molecules Clusters and solids, electronic stress, and electron affinity difference The information theory and the virial theorem New periodic tables The role of the ionization potential Although most of the chapters are written at a level that is accessible to a senior graduate student, experienced researchers will also find interesting new insights in these experts’ perspectives. This comprehensive book provides an invaluable resource toward understanding the whole gamut of atoms, molecules, and clusters.

Information and Communication Theory in Molecular Biology

Author : Martin Bossert
File Size : 42.42 MB
Format : PDF
Download : 562
Read : 1045
Download »
This edited monograph presents the collected interdisciplinary research results of the priority program “Information- and Communication Theory in Molecular Biology (InKoMBio, SPP 1395)”, funded by the German Research Foundation DFG, 2010 until 2016. The topical spectrum is very broad and comprises, but is not limited to, aspects such as microRNA as part of cell communication, information flow in mammalian signal transduction pathway, cell-cell communication, semiotic structures in biological systems, as well as application of methods from information theory in protein interaction analysis. The target audience primarily comprises research experts in the field of biological signal processing, but the book is also beneficial for graduate students alike.

Fragmentation Toward Accurate Calculations on Complex Molecular Systems

Author : Mark S. Gordon
File Size : 64.37 MB
Format : PDF, Docs
Download : 539
Read : 841
Download »
Fragmentation: Toward Accurate Calculations on Complex Molecular Systems introduces the reader to the broad array of fragmentation and embedding methods that are currently available or under development to facilitate accurate calculations on large, complex systems such as proteins, polymers, liquids and nanoparticles. These methods work by subdividing a system into subunits, called fragments or subsystems or domains. Calculations are performed on each fragment and then the results are combined to predict properties for the whole system. Topics covered include: Fragmentation methods Embedding methods Explicitly correlated local electron correlation methods Fragment molecular orbital method Methods for treating large molecules This book is aimed at academic researchers who are interested in computational chemistry, computational biology, computational materials science and related fields, as well as graduate students in these fields.

The Chemical Bond

Author : Gernot Frenking
File Size : 27.60 MB
Format : PDF, Kindle
Download : 823
Read : 614
Download »
A unique overview of the different kinds of chemical bonds that can be found in the periodic table, from the main-group elements to transition elements, lanthanides and actinides. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemical models and faster computers. This is the perfect complement to "Chemical Bonding - Fundamentals and Models" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community.

Molecular Electronics

Author : Gunter Mahler
File Size : 66.44 MB
Format : PDF, Docs
Download : 868
Read : 566
Download »
Integrating molecular physics and information theory, this work presents molecular electronics as a method for information storage and retrieval that incorporates nanometer-scaled systems, uses microscopic particles and exploits the laws of quantum mechanics. It furnishes application examples employing properties of distinct molecules joined together to a macroscopic ensemble of virtually identical units.

Towards an Information Theory of Complex Networks

Author : Matthias Dehmer
File Size : 72.67 MB
Format : PDF, ePub
Download : 171
Read : 798
Download »
For over a decade, complex networks have steadily grown as an important tool across a broad array of academic disciplines, with applications ranging from physics to social media. A tightly organized collection of carefully-selected papers on the subject, Towards an Information Theory of Complex Networks: Statistical Methods and Applications presents theoretical and practical results about information-theoretic and statistical models of complex networks in the natural sciences and humanities. The book's major goal is to advocate and promote a combination of graph-theoretic, information-theoretic, and statistical methods as a way to better understand and characterize real-world networks. This volume is the first to present a self-contained, comprehensive overview of information-theoretic models of complex networks with an emphasis on applications. As such, it marks a first step toward establishing advanced statistical information theory as a unified theoretical basis of complex networks for all scientific disciplines and can serve as a valuable resource for a diverse audience of advanced students and professional scientists. While it is primarily intended as a reference for research, the book could also be a useful supplemental graduate text in courses related to information science, graph theory, machine learning, and computational biology, among others.