Search results for: group-representation-for-quantum-theory

Quantum Theory Groups and Representations

Author : Peter Woit
File Size : 84.69 MB
Format : PDF
Download : 284
Read : 687
Download »
This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

The Theory of Groups and Quantum Mechanics

Author : Hermann Weyl
File Size : 87.73 MB
Format : PDF, ePub
Download : 524
Read : 170
Download »
This landmark among mathematics texts applies group theory to quantum mechanics, first covering unitary geometry, quantum theory, groups and their representations, then applications themselves — rotation, Lorentz, permutation groups, symmetric permutation groups, and the algebra of symmetric transformations.

Induced Representations of Groups and Quantum Mechanics

Author : George Whitelaw Mackey
File Size : 54.8 MB
Format : PDF, Mobi
Download : 337
Read : 634
Download »

Group Theory and Quantum Mechanics

Author : Michael Tinkham
File Size : 22.55 MB
Format : PDF, Kindle
Download : 798
Read : 453
Download »
Graduate-level text develops group theory relevant to physics and chemistry and illustrates their applications to quantum mechanics, with systematic treatment of quantum theory of atoms, molecules, solids. 1964 edition.

Applications of Group Theory in Quantum Mechanics

Author : M. I. Petrashen
File Size : 38.69 MB
Format : PDF, Kindle
Download : 904
Read : 1263
Download »
Geared toward postgraduate students, theoretical physicists, and researchers, this advanced text explores the role of modern group-theoretical methods in quantum theory. The authors based their text on a physics course they taught at a prominent Soviet university. Readers will find it a lucid guide to group theory and matrix representations that develops concepts to the level required for applications. The text's main focus rests upon point and space groups, with applications to electronic and vibrational states. Additional topics include continuous rotation groups, permutation groups, and Lorentz groups. A number of problems involve studies of the symmetry properties of the Schroedinger wave function, as well as the explanation of "additional" degeneracy in the Coulomb field and certain subjects in solid-state physics. The text concludes with an instructive account of problems related to the conditions for relativistic invariance in quantum theory.

Groups Representations and Physics

Author : H.F Jones
File Size : 31.5 MB
Format : PDF, Kindle
Download : 440
Read : 921
Download »
Illustrating the fascinating interplay between physics and mathematics, Groups, Representations and Physics, Second Edition provides a solid foundation in the theory of groups, particularly group representations. For this new, fully revised edition, the author has enhanced the book's usefulness and widened its appeal by adding a chapter on the Cartan-Dynkin treatment of Lie algebras. This treatment, a generalization of the method of raising and lowering operators used for the rotation group, leads to a systematic classification of Lie algebras and enables one to enumerate and construct their irreducible representations. Taking an approach that allows physics students to recognize the power and elegance of the abstract, axiomatic method, the book focuses on chapters that develop the formalism, followed by chapters that deal with the physical applications. It also illustrates formal mathematical definitions and proofs with numerous concrete examples.

Theory of Group Representations and Applications

Author : A Barut
File Size : 39.33 MB
Format : PDF, ePub, Mobi
Download : 301
Read : 1256
Download »
The material collected in this book originated from lectures given by authors over many years in Warsaw, Trieste, Schladming, Istanbul, Goteborg and Boulder. There is no other comparable book on group representations, neither in mathematical nor in physical literature and it is hoped that this book will prove to be useful in many areas of research. It is highly recommended as a textbook for an advanced course in mathematical physics on Lie algebras, Lie groups and their representations. Request Inspection Copy

Representation Theory of Algebraic Groups and Quantum Groups

Author : Akihiko Gyoja
File Size : 21.34 MB
Format : PDF, ePub, Mobi
Download : 644
Read : 187
Download »
Invited articles by top notch experts Focus is on topics in representation theory of algebraic groups and quantum groups Of interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics

Group Representation Theory for Physicists

Author : Jin-Quan Chen
File Size : 43.94 MB
Format : PDF, ePub, Mobi
Download : 103
Read : 651
Download »
This book introduces systematically the eigenfunction method, a new approach to the group representation theory which was developed by the authors in the 1970's and 1980's in accordance with the concept and method used in quantum mechanics. It covers the applications of the group theory in various branches of physics and quantum chemistry, especially nuclear and molecular physics. Extensive tables and computational methods are presented. Group Representation Theory for Physicists may serve as a handbook for researchers doing group theory calculations. It is also a good reference book and textbook for undergraduate and graduate students who intend to use group theory in their future research careers.

Group Theory in Physics

Author : Wu-Ki Tung
File Size : 88.52 MB
Format : PDF, Mobi
Download : 483
Read : 1283
Download »
An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems. Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry. Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained. A set of problems and solutions has been published in a separate booklet. Request Inspection Copy

Group Theory

Author : Eugene P. Wigner
File Size : 83.53 MB
Format : PDF, ePub, Mobi
Download : 322
Read : 1069
Download »
Group Theory and its Application to the Quantum Mechanics of Atomic Spectra describes the applications of group theoretical methods to problems of quantum mechanics with particular reference to atomic spectra. The manuscript first takes a look at vectors and matrices, generalizations, and principal axis transformation. Topics include principal axis transformation for unitary and Hermitian matrices; unitary matrices and the scalar product; linear independence of vectors; and real orthogonal and symmetric matrices. The publication also ponders on the elements of quantum mechanics, perturbation theory, and transformation theory and the bases for the statistical interpretation of quantum mechanics. The book discusses abstract group theory and invariant subgroups, including theorems of finite groups, factor group, and isomorphism and homomorphism. The text also reviews the algebra of representation theory, rotation groups, three-dimensional pure rotation group, and characteristics of atomic spectra. Discussions focus on eigenvalues and quantum numbers, spherical harmonics, and representations of the unitary group. The manuscript is a valuable reference for readers interested in the applications of group theoretical methods.

Operators and Representation Theory

Author : Palle E.T. Jorgensen
File Size : 64.45 MB
Format : PDF, ePub, Docs
Download : 864
Read : 1198
Download »
Three-part treatment covers background material on definitions, terminology, operators in Hilbert space domains of representations, operators in the enveloping algebra, spectral theory; and covariant representation and connections. 2017 edition.

Operational Quantum Theory I

Author : Heinrich Saller
File Size : 53.33 MB
Format : PDF
Download : 508
Read : 825
Download »
Operational Quantum Theory I is a distinguished work on quantum theory at an advanced algebraic level. The classically oriented hierarchy with objects such as particles as the primary focus, and interactions of these objects as the secondary focus is reversed with the operational interactions as basic quantum structures. Quantum theory, specifically nonrelativistic quantum mechanics, is developed from the theory of Lie group and Lie algebra operations acting on both finite and infinite dimensional vector spaces. In this book, time and space related finite dimensional representation structures and simple Lie operations, and as a non-relativistic application, the Kepler problem which has long fascinated quantum theorists, are dealt with in some detail. Operational Quantum Theory I features many structures which allow the reader to better understand the applications of operational quantum theory, and to provide conceptually appropriate descriptions of the subject. Operational Quantum Theory I aims to understand more deeply on an operational basis what one is working with in nonrelativistic quantum theory, but also suggests new approaches to the characteristic problems of quantum mechanics.

Group Theory in Quantum Mechanics

Author : Volker Heine
File Size : 72.33 MB
Format : PDF, Mobi
Download : 253
Read : 1065
Download »
Group Theory in Quantum Mechanics: An Introduction to its Present Usage introduces the reader to the three main uses of group theory in quantum mechanics: to label energy levels and the corresponding eigenstates; to discuss qualitatively the splitting of energy levels as one starts from an approximate Hamiltonian and adds correction terms; and to aid in the evaluation of matrix elements of all kinds, and in particular to provide general selection rules for the non-zero ones. The theme is to show how all this is achieved by considering the symmetry properties of the Hamiltonian and the way in which these symmetries are reflected in the wave functions. This book is comprised of eight chapters and begins with an overview of the necessary mathematical concepts, including representations and vector spaces and their relevance to quantum mechanics. The uses of symmetry properties and mathematical expression of symmetry operations are also outlined, along with symmetry transformations of the Hamiltonian. The next chapter describes the three uses of group theory, with particular reference to the theory of atomic energy levels and transitions. The following chapters deal with the theory of free atoms and ions; representations of finite groups; the electronic structure and vibrations of molecules; solid state physics; and relativistic quantum mechanics. Nuclear physics is also discussed, with emphasis on the isotopic spin formalism, nuclear forces, and the reactions that arise when the nuclei take part in time-dependent processes. This monograph will be of interest to physicists and mathematicians.

Group Representation for Quantum Theory

Author : Masahito Hayashi
File Size : 59.85 MB
Format : PDF, Mobi
Download : 308
Read : 284
Download »
This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction. To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory. Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics. To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e.g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e.g., SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e.g., angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model. Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.

Group Theory and Quantum Mechanics

Author : Bartel L. van der Waerden
File Size : 31.43 MB
Format : PDF, ePub, Mobi
Download : 715
Read : 931
Download »
The German edition of this book appeared in 1932 under the title "Die gruppentheoretische Methode in der Quantenmechanik". Its aim was, to explain the fundamental notions of the Theory of Groups and their Representations, and the application of this theory to the Quantum Mechanics of Atoms and Molecules. The book was mainly written for the benefit of physicists who were supposed to be familiar with Quantum Mechanics. However, it turned out that it was also used by. mathematicians who wanted to learn Quantum Mechanics from it. Naturally, the physical parts were too difficult for mathematicians, whereas the mathematical parts were sometimes too difficult for physicists. The German language created an additional difficulty for many readers. In order to make the book more readable for physicists and mathe maticians alike, I have rewritten the whole volume. The changes are most notable in Chapters 1 and 6. In Chapter t, I have tried to give a mathematically rigorous exposition of the principles of Quantum Mechanics. This was possible because recent investigations in the theory of self-adjoint linear operators have made the mathematical foundation of Quantum Mechanics much clearer than it was in t 932. Chapter 6, on Molecule Spectra, was too much condensed in the German edition. I hope it is now easier to understand. In Chapter 2-5 too, numerous changes were made in order to make the book more readable and more useful.

Foundations of Quantum Group Theory

Author : Shahn Majid
File Size : 70.22 MB
Format : PDF, Docs
Download : 588
Read : 1169
Download »
A graduate level text which systematically lays out the foundations of Quantum Groups.

Group Theory and Physics

Author : S. Sternberg
File Size : 86.70 MB
Format : PDF, Mobi
Download : 793
Read : 632
Download »
A cohesive and well-motivated introduction to group theory and its application to physics.

Group and Representation Theory

Author : J D Vergados
File Size : 39.72 MB
Format : PDF
Download : 541
Read : 592
Download »
This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables. This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elements of the algebra on uniquely specified highest weight states. Alternatively these representations can be described in terms of tensors labeled by the Young tableaux associated with the discrete symmetry Sn. The connection between the Young tableaux and the Dynkin weights is also discussed. It is also shown that in many physical systems the quantum numbers needed to specify the physical states involve not only the highest symmetry but also a number of sub-symmetries contained in them. This leads to the study of the role of subalgebras and in particular the possible maximal subalgebras. In many applications the physical system can be considered as composed of subsystems obeying a given symmetry. In such cases the reduction of the Kronecker product of irreducible representations of classical and special algebras becomes relevant and is discussed in some detail. The method of obtaining the relevant Clebsch-Gordan (C-G) coefficients for such algebras is discussed and some relevant algorithms are provided. In some simple cases suitable numerical tables of C-G are also included. The above exposition contains many examples, both as illustrations of the main ideas as well as well motivated applications. To this end two appendices of 51 pages — 11 tables in Appendix A, summarizing the material discussed in the main text and 39 tables in Appendix B containing results of more sophisticated examples are supplied. Reference to the tables is given in the main text and a guide to the appropriate section of the main text is given in the tables. Request Inspection Copy

Quantum Theory Groups Fields and Particles

Author : A. O. Barut
File Size : 31.84 MB
Format : PDF, ePub, Mobi
Download : 444
Read : 907
Download »
Symmetry and Dynamics have played, sometimes dualistic, sometimes complimentary, but always a very essential role in the physicist's description and conception of Nature. These are again the basic underlying themes of the present volume. It collects self-contained introductory contributions on some of the recent developments both in mathematical concepts and in physical applications which are becoming very important in current research. So we see in this volume, on the one hand, differential geometry, group representations, topology and algebras and on the other hand, particle equations, particle dynamics and particle interactions. Specifically, this book contains a complete exposition of the theory of deformations of symplectic algebras and quantization, expository material on topology and geometry in physics, and group representations. On the more physical side, we have studies on the concept of particles, on conformal spinors of Cartan, on gauge and supersymmetric field theories, and on relativistic theory of particle interactions and the theory of magnetic resonances. The contributions collected here were originally delivered at two Meetings in Turkey, at Blacksea University in Trabzon and at the University of Bosphorus in Istanbul. But they have been thoroughly revised, updated and extended for this volume. It is a pleasure for me to acknowledge the support of UNESCO, the support and hospitality of Blacksea and Bosphorus Universities for these two memorable Meetings in Mathematical Physics, and to thank the Contributors for their effort and care in preparing this work.