Search results for: evolutionary-optimization

Evolutionary Optimization Algorithms

Author : Dan Simon
File Size : 25.27 MB
Format : PDF, ePub, Mobi
Download : 590
Read : 1119
Download »
A clear and lucid bottom-up approach to the basic principlesof evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificialintelligence. EAs are motivated by optimization processes that weobserve in nature, such as natural selection, species migration,bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, andprogramming of evolutionary optimization algorithms. Featuredalgorithms include genetic algorithms, genetic programming, antcolony optimization, particle swarm optimization, differentialevolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists thereader in obtaining a clear—but theoreticallyrigorous—understanding of evolutionary algorithms, with anemphasis on implementation Gives a careful treatment of recently developedEAs—including opposition-based learning, artificial fishswarms, bacterial foraging, and many others— and discussestheir similarities and differences from more well-establishedEAs Includes chapter-end problems plus a solutions manual availableonline for instructors Offers simple examples that provide the reader with anintuitive understanding of the theory Features source code for the examples available on the author'swebsite Provides advanced mathematical techniques for analyzing EAs,including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspiredand Population-Based Approaches to Computer Intelligence is anideal text for advanced undergraduate students, graduate students,and professionals involved in engineering and computer science.

Noisy Optimization With Evolution Strategies

Author : Dirk V. Arnold
File Size : 70.6 MB
Format : PDF, Mobi
Download : 125
Read : 942
Download »
Noise is a common factor in most real-world optimization problems. Sources of noise can include physical measurement limitations, stochastic simulation models, incomplete sampling of large spaces, and human-computer interaction. Evolutionary algorithms are general, nature-inspired heuristics for numerical search and optimization that are frequently observed to be particularly robust with regard to the effects of noise. Noisy Optimization with Evolution Strategies contributes to the understanding of evolutionary optimization in the presence of noise by investigating the performance of evolution strategies, a type of evolutionary algorithm frequently employed for solving real-valued optimization problems. By considering simple noisy environments, results are obtained that describe how the performance of the strategies scales with both parameters of the problem and of the strategies considered. Such scaling laws allow for comparisons of different strategy variants, for tuning evolution strategies for maximum performance, and they offer insights and an understanding of the behavior of the strategies that go beyond what can be learned from mere experimentation. This first comprehensive work on noisy optimization with evolution strategies investigates the effects of systematic fitness overvaluation, the benefits of distributed populations, and the potential of genetic repair for optimization in the presence of noise. The relative robustness of evolution strategies is confirmed in a comparison with other direct search algorithms. Noisy Optimization with Evolution Strategies is an invaluable resource for researchers and practitioners of evolutionary algorithms.

Evolutionary Optimization

Author : Ruhul Sarker
File Size : 33.85 MB
Format : PDF, Docs
Download : 962
Read : 1010
Download »
Evolutionary computation techniques have attracted increasing att- tions in recent years for solving complex optimization problems. They are more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. E- lutionary computation techniques can deal with complex optimization problems better than traditional optimization techniques. However, most papers on the application of evolutionary computation techniques to Operations Research /Management Science (OR/MS) problems have scattered around in different journals and conference proceedings. They also tend to focus on a very special and narrow topic. It is the right time that an archival book series publishes a special volume which - cludes critical reviews of the state-of-art of those evolutionary com- tation techniques which have been found particularly useful for OR/MS problems, and a collection of papers which represent the latest devel- ment in tackling various OR/MS problems by evolutionary computation techniques. This special volume of the book series on Evolutionary - timization aims at filling in this gap in the current literature. The special volume consists of invited papers written by leading - searchers in the field. All papers were peer reviewed by at least two recognised reviewers. The book covers the foundation as well as the practical side of evolutionary optimization.

Evolutionary Optimization the GP toolkit

Author : Ernesto Sanchez
File Size : 47.22 MB
Format : PDF, ePub, Docs
Download : 416
Read : 955
Download »
This book describes an award-winning evolutionary algorithm that outperformed experts and conventional heuristics in solving several industrial problems. It presents a discussion of the theoretical and practical aspects that enabled μGP (MicroGP) to autonomously find the optimal solution of hard problems, handling highly structured data, such as full-fledged assembly programs, with functions and interrupt handlers. For a practitioner, μGP is simply a versatile optimizer to tackle most problems with limited setup effort. The book is valuable for all who require heuristic problem-solving methodologies, such as engineers dealing with verification and test of electronic circuits; or researchers working in robotics and mobile communication. Examples are provided to guide the reader through the process, from problem definition to gathering results. For an evolutionary computation researcher, μGP may be regarded as a platform where new operators and strategies can be easily tested. MicroGP (the toolkit) is an active project hosted by Sourceforge: http://ugp3.sourceforge.net/

Evolutionary Multi Criterion Optimization

Author : Shigeru Obayashi
File Size : 48.9 MB
Format : PDF, Docs
Download : 137
Read : 609
Download »
This book constitutes the refereed proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007, held in Matsushima, Japan in March 2007. The 65 revised full papers presented together with 4 invited papers are organized in topical sections on algorithm design, algorithm improvements, alternative methods, applications, engineering design, many objectives, objective handling, and performance assessments.

Evolutionary Optimization in Dynamic Environments

Author : Jürgen Branke
File Size : 58.91 MB
Format : PDF, Mobi
Download : 101
Read : 1063
Download »
Evolutionary Algorithms (EAs) have grown into a mature field of research in optimization, and have proven to be effective and robust problem solvers for a broad range of static real-world optimization problems. Yet, since they are based on the principles of natural evolution, and since natural evolution is a dynamic process in a changing environment, EAs are also well suited to dynamic optimization problems. Evolutionary Optimization in Dynamic Environments is the first comprehensive work on the application of EAs to dynamic optimization problems. It provides an extensive survey on research in the area and shows how EAs can be successfully used to continuously and efficiently adapt a solution to a changing environment, find a good trade-off between solution quality and adaptation cost, find robust solutions whose quality is insensitive to changes in the environment, find flexible solutions which are not only good but that can be easily adapted when necessary. All four aspects are treated in this book, providing a holistic view on the challenges and opportunities when applying EAs to dynamic optimization problems. The comprehensive and up-to-date coverage of the subject, together with details of latest original research, makes Evolutionary Optimization in Dynamic Environments an invaluable resource for researchers and professionals who are dealing with dynamic and stochastic optimization problems, and who are interested in applying local search heuristics, such as evolutionary algorithms.

Evolutionary Optimization Algorithms

Author : Altaf Q. H. Badar
File Size : 62.88 MB
Format : PDF, Kindle
Download : 835
Read : 521
Download »
This comprehensive reference text discusses evolutionary optimization techniques, to find optimal solutions for single and multi-objective problems. The text presents each evolutionary optimization algorithm along with its history and other working equations. It also discusses variants and hybrids of optimization techniques. The text presents step-by-step solution to a problem and includes software’s like MATLAB and Python for solving optimization problems. It covers important optimization algorithms including single objective optimization, multi objective optimization, Heuristic optimization techniques, shuffled frog leaping algorithm, bacteria foraging algorithm and firefly algorithm. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, mechanical engineering, and computer science and engineering, this text: Provides step-by-step solution for each evolutionary optimization algorithm. Provides flowcharts and graphics for better understanding of optimization techniques. Discusses popular optimization techniques include particle swarm optimization and genetic algorithm. Presents every optimization technique along with the history and working equations. Includes latest software like Python and MATLAB.

Data Driven Evolutionary Optimization

Author : Yaochu Jin
File Size : 32.80 MB
Format : PDF, Mobi
Download : 139
Read : 361
Download »
Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.

Constraint Handling in Evolutionary Optimization

Author : Efrén Mezura-Montes
File Size : 79.97 MB
Format : PDF, Mobi
Download : 855
Read : 251
Download »
This book is the result of a special session on constraint-handling techniques used in evolutionary algorithms within the Congress on Evolutionary Computation (CEC) in 2007. It presents recent research in constraint-handling in evolutionary optimization.

Evolutionary Optimization and Game Strategies for Advanced Multi Disciplinary Design

Author : Jacques Periaux
File Size : 43.63 MB
Format : PDF, ePub, Mobi
Download : 797
Read : 930
Download »
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with civil aircraft and UAV, UCAV systems are implemented numerically and discussed. Applications of increasing optimization complexity are presented as well as two hands-on test cases problems. These examples focus on aeronautical applications and will be useful to the practitioner in the laboratory or in industrial design environments. The evolutionary methods coupled with games presented in this volume can be applied to other areas including surface and marine transport, structures, biomedical engineering, renewable energy and environmental problems. This book will be of interest to students, young scientists and engineers involved in the field of multi physics optimization.

Evolutionary Algorithms

Author : Alain Petrowski
File Size : 56.78 MB
Format : PDF
Download : 149
Read : 357
Download »
Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.

UNSUPERVISED CLUSTERING CATEGORICAL DATA USING EVOLUTIONARY OPTIMIZATION TECHNIQUES

Author : Dr. G. Surya Narayana
File Size : 77.14 MB
Format : PDF, ePub, Docs
Download : 105
Read : 1115
Download »

A Brief Introduction to Continuous Evolutionary Optimization

Author : Oliver Kramer
File Size : 37.13 MB
Format : PDF, ePub, Mobi
Download : 995
Read : 430
Download »
Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel parameters of the Nadaraya-Watson estimator and a swarm-based iterative approach is presented for optimizing latent points in dimensionality reduction problems. Experiments on typical benchmark problems as well as numerous figures and diagrams illustrate the behavior of the introduced concepts and methods.

Numerical and Evolutionary Optimization NEO 2017

Author : Leonardo Trujillo
File Size : 81.70 MB
Format : PDF
Download : 429
Read : 234
Download »
This book features 15 chapters based on the Numerical and Evolutionary Optimization (NEO 2017) workshop, held from September 27 to 29 in the city of Tijuana, Mexico. The event gathered researchers from two complimentary fields to discuss the theory, development and application of state-of-the-art techniques to address search and optimization problems. The lively event included 7 invited talks and 64 regular talks covering a wide range of topics, from evolutionary computer vision and machine learning with evolutionary computation, to set oriented numeric and steepest descent techniques. Including research submitted by the NEO community, the book provides informative and stimulating material for future research in the field.

Evolutionary Multi Criterion Optimization

Author : Heike Trautmann
File Size : 79.55 MB
Format : PDF, Kindle
Download : 839
Read : 495
Download »
This book constitutes the refereed proceedings of the 9th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2017 held in Münster, Germany in March 2017. The 33 revised full papers presented together with 13 poster presentations were carefully reviewed and selected from 72 submissions. The EMO 2017 aims to discuss all aspects of EMO development and deployment, including theoretical foundations; constraint handling techniques; preference handling techniques; handling of continuous, combinatorial or mixed-integer problems; local search techniques; hybrid approaches; stopping criteria; parallel EMO models; performance evaluation; test functions and benchmark problems; algorithm selection approaches; many-objective optimization; large scale optimization; real-world applications; EMO algorithm implementations.

Data Driven Evolutionary Optimization

Author : Yaochu Jin
File Size : 28.34 MB
Format : PDF, ePub, Mobi
Download : 324
Read : 724
Download »
Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.

Recent Advances in Evolutionary Multi objective Optimization

Author : Slim Bechikh
File Size : 82.71 MB
Format : PDF, ePub
Download : 692
Read : 770
Download »
This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-and coming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include: optimization in dynamic environments, multi-objective bilevel programming, handling high dimensionality under many objectives, and evolutionary multitasking. In addition to theory and methodology, this book describes several real-world applications from various domains, which will expose the readers to the versatility of evolutionary multi-objective optimization.

Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques

Author : Manuel Barros
File Size : 58.5 MB
Format : PDF, ePub, Mobi
Download : 495
Read : 745
Download »
The microelectronics market, with special emphasis to the production of complex mixed-signal systems-on-chip (SoC), is driven by three main dynamics, time-- market, productivity and managing complexity. Pushed by the progress in na- meter technology, the design teams are facing a curve of complexity that grows exponentially, thereby slowing down the productivity design rate. Analog design automation tools are not developing at the same pace of technology, once custom design, characterized by decisions taken at each step of the analog design flow, - lies most of the time on designer knowledge and expertise. Actually, the use of - sign management platforms, like the Cadences Virtuoso platform, with a set of - tegrated CAD tools and database facilities to deal with the design transformations from the system level to the physical implementation, can significantly speed-up the design process and enhance the productivity of analog/mixed-signal integrated circuit (IC) design teams. These design management platforms are a valuable help in analog IC design but they are still far behind the development stage of design automation tools already available for digital design. Therefore, the development of new CAD tools and design methodologies for analog and mixed-signal ICs is ess- tial to increase the designer’s productivity and reduce design productivitygap. The work presented in this book describes a new design automation approach to the problem of sizing analog ICs.

Evolutionary Multi Criterion Optimization

Author : Kalyanmoy Deb
File Size : 78.88 MB
Format : PDF, Mobi
Download : 637
Read : 260
Download »
This book constitutes the refereed proceedings of the 10th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2019 held in East Lansing, MI, USA, in March 2019. The 59 revised full papers were carefully reviewed and selected from 76 submissions. The papers are divided into 8 categories, each representing a key area of current interest in the EMO field today. They include theoretical developments, algorithmic developments, issues in many-objective optimization, performance metrics, knowledge extraction and surrogate-based EMO, multi-objective combinatorial problem solving, MCDM and interactive EMO methods, and applications.

Optinformatics in Evolutionary Learning and Optimization

Author : Liang Feng
File Size : 24.54 MB
Format : PDF
Download : 764
Read : 699
Download »
This book provides readers the recent algorithmic advances towards realizing the notion of optinformatics in evolutionary learning and optimization. The book also provides readers a variety of practical applications, including inter-domain learning in vehicle route planning, data-driven techniques for feature engineering in automated machine learning, as well as evolutionary transfer reinforcement learning. Through reading this book, the readers will understand the concept of optinformatics, recent research progresses in this direction, as well as particular algorithm designs and application of optinformatics. Evolutionary algorithms (EAs) are adaptive search approaches that take inspiration from the principles of natural selection and genetics. Due to their efficacy of global search and ease of usage, EAs have been widely deployed to address complex optimization problems occurring in a plethora of real-world domains, including image processing, automation of machine learning, neural architecture search, urban logistics planning, etc. Despite the success enjoyed by EAs, it is worth noting that most existing EA optimizers conduct the evolutionary search process from scratch, ignoring the data that may have been accumulated from different problems solved in the past. However, today, it is well established that real-world problems seldom exist in isolation, such that harnessing the available data from related problems could yield useful information for more efficient problem-solving. Therefore, in recent years, there is an increasing research trend in conducting knowledge learning and data processing along the course of an optimization process, with the goal of achieving accelerated search in conjunction with better solution quality. To this end, the term optinformatics has been coined in the literature as the incorporation of information processing and data mining (i.e., informatics) techniques into the optimization process. The primary market of this book is researchers from both academia and industry, who are working on computational intelligence methods and their applications. This book is also written to be used as a textbook for a postgraduate course in computational intelligence emphasizing methodologies at the intersection of optimization and machine learning.