Equations in Mathematical Physics

A practical course


Author: Victor P. Pikulin,Stanislav I. Pohozaev

Publisher: Springer Science & Business Media

ISBN: 3034802676

Category: Mathematics

Page: 207

View: 3207

Many physical processes in fields such as mechanics, thermodynamics, electricity, magnetism or optics are described by means of partial differential equations. The aim of the present book is to demontstrate the basic methods for solving the classical linear problems in mathematical physics of elliptic, parabolic and hyperbolic type. In particular, the methods of conformal mappings, Fourier analysis and Green`s functions are considered, as well as the perturbation method and integral transformation method, among others. Every chapter contains concrete examples with a detailed analysis of their solution.The book is intended as a textbook for students in mathematical physics, but will also serve as a handbook for scientists and engineers.

A Practical Course in Differential Equations and Mathematical Modelling

Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance Principles


Author: Nail H Ibragimov

Publisher: World Scientific Publishing Company

ISBN: 9813107766

Category: Mathematics

Page: 364

View: 5449

A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book — which aims to present new mathematical curricula based on symmetry and invariance principles — is tailored to develop analytic skills and “working knowledge” in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author's extensive teaching experience at Novosibirsk and Moscow universities in Russia, Collège de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.

Handbook of Linear Partial Differential Equations for Engineers and Scientists


Author: Andrei D. Polyanin

Publisher: CRC Press

ISBN: 1420035320

Category: Mathematics

Page: 800

View: 949

Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with constant and variable coefficients New exact solutions to linear equations and boundary value problems Equations and problems of general form that depend on arbitrary functions Formulas for constructing solutions to nonhomogeneous boundary value problems Second- and higher-order equations and boundary value problems An introductory section outlines the basic definitions, equations, problems, and methods of mathematical physics. It also provides useful formulas for expressing solutions to boundary value problems of general form in terms of the Green's function. Two supplements at the end of the book furnish more tools and information: Supplement A lists the properties of common special functions, including the gamma, Bessel, degenerate hypergeometric, and Mathieu functions, and Supplement B describes the methods of generalized and functional separation of variables for nonlinear partial differential equations.

A Collection of Problems on Mathematical Physics

International Series of Monographs in Pure and Applied Mathematics


Author: B. M. Budak,A. A. Samarskii,A. N. Tikhonov

Publisher: Elsevier

ISBN: 1483184862

Category: Science

Page: 782

View: 2398

A Collection of Problems on Mathematical Physics is a translation from the Russian and deals with problems and equations of mathematical physics. The book contains problems and solutions. The book discusses problems on the derivation of equations and boundary condition. These Problems are arranged on the type and reduction to canonical form of equations in two or more independent variables. The equations of hyperbolic type concerns derive from problems on vibrations of continuous media and on electromagnetic oscillations. The book considers the statement and solutions of boundary value problems pertaining to equations of parabolic types when the physical processes are described by functions of two, three or four independent variables such as spatial coordinates or time. The book then discusses dynamic problems pertaining to the mechanics of continuous media and problems on electrodynamics. The text also discusses hyperbolic and elliptic types of equations. The book is intended for students in advanced mathematics and physics, as well as, for engineers and workers in research institutions.

A First Course in Computational Physics


Author: Paul L. DeVries,Javier E. Hasbun

Publisher: Jones & Bartlett Publishers

ISBN: 144965780X

Category: Technology & Engineering

Page: 433

View: 1807

Computers and computation are extremely important components of physics and should be integral parts of a physicist’s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) © 2011 IEEE, Published by the IEEE Computer Society

A First Course in the Numerical Analysis of Differential Equations


Author: A. Iserles

Publisher: Cambridge University Press

ISBN: 0521734908

Category: Mathematics

Page: 459

View: 7212

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

A First Course in Differential Equations, Modeling, and Simulation


Author: Carlos A. Smith,Scott W. Campbell

Publisher: CRC Press

ISBN: 1439850879

Category: Mathematics

Page: 345

View: 9589

Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for obtaining the analytical solution of differential equations and Laplace transforms. In addition, the authors discuss how these equations describe mathematical systems and how to use software to solve sets of equations where analytical solutions cannot be obtained. Using simple physics, the book introduces dynamic modeling, the definition of differential equations, two simple methods for obtaining their analytical solution, and a method to follow when modeling. It then presents classical methods for solving differential equations, discusses the engineering importance of the roots of a characteristic equation, and describes the response of first- and second-order differential equations. A study of the Laplace transform method follows with explanations of the transfer function and the power of Laplace transform for obtaining the analytical solution of coupled differential equations. The next several chapters present the modeling of translational and rotational mechanical systems, fluid systems, thermal systems, and electrical systems. The final chapter explores many simulation examples using a typical software package for the solution of the models developed in previous chapters. Providing the necessary tools to apply differential equations in engineering and science, this text helps readers understand differential equations, their meaning, and their analytical and computer solutions. It illustrates how and where differential equations develop, how they describe engineering systems, how to obtain the analytical solution, and how to use software to simulate the systems.

Numerical Partial Differential Equations for Environmental Scientists and Engineers

A First Practical Course


Author: Daniel R. Lynch

Publisher: Springer Science & Business Media

ISBN: 0387236201

Category: Science

Page: 388

View: 4900

For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.

Asymptotic Analysis of Differential Equations


Author: R. B. White

Publisher: World Scientific

ISBN: 1848166079

Category: Mathematics

Page: 405

View: 3207

"This is a useful volume in which a wide selection of asymptotic techniques is clearly presented in a form suitable for both applied mathematicians and Physicists who require an introduction to asymptotic techniques." --Book Jacket.