Handbook of Discrete and Computational Geometry, Second Edition

DOWNLOAD NOW »

Author: Csaba D. Toth,Joseph O'Rourke,Jacob E. Goodman

Publisher: CRC Press

ISBN: 9781420035315

Category: Mathematics

Page: 1560

View: 9254

While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies

Invariant Methods in Discrete and Computational Geometry

Proceedings of the Curaçao Conference, 13–17 June, 1994

DOWNLOAD NOW »

Author: Neil L. White

Publisher: Springer Science & Business Media

ISBN: 9401584028

Category: Computers

Page: 328

View: 1564

Invariant, or coordinate-free methods provide a natural framework for many geometric questions. Invariant Methods in Discrete and Computational Geometry provides a basic introduction to several aspects of invariant theory, including the supersymmetric algebra, the Grassmann-Cayler algebra, and Chow forms. It also presents a number of current research papers on invariant theory and its applications to problems in geometry, such as automated theorem proving and computer vision. Audience: Researchers studying mathematics, computers and robotics.

Handbook of Discrete and Computational Geometry

DOWNLOAD NOW »

Author: Csaba D. Toth,Joseph O'Rourke,Jacob E. Goodman

Publisher: CRC Press

ISBN: 1498711421

Category: Computers

Page: 1928

View: 5096

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Discrete and Computational Geometry

DOWNLOAD NOW »

Author: Satyan L. Devadoss,Joseph O'Rourke

Publisher: Princeton University Press

ISBN: 9781400838981

Category: Mathematics

Page: 280

View: 2289

Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only). To obtain access, please e-mail: [email protected]

Differential Geometry and Topology, Discrete and Computational Geometry

DOWNLOAD NOW »

Author: Mohamed Boucetta,J.-M. Morvan

Publisher: IOS Press

ISBN: 158603507X

Category: Mathematics

Page: 373

View: 377

The aim of this volume is to give an introduction and overview to differential topology, differential geometry and computational geometry with an emphasis on some interconnections between these three domains of mathematics. The chapters give the background required to begin research in these fields or at their interfaces. They introduce new research domains and both old and new conjectures in these different subjects show some interaction between other sciences close to mathematics. Topics discussed are; the basis of differential topology and combinatorial topology, the link between differential geometry and topology, Riemanian geometry (Levi-Civita connextion, curvature tensor, geodesic, completeness and curvature tensor), characteristic classes (to associate every fibre bundle with isomorphic fiber bundles), the link between differential geometry and the geometry of non smooth objects, computational geometry and concrete applications such as structural geology and graphism.

Surveys on Discrete and Computational Geometry

Twenty Years Later : AMS-IMS-SIAM Joint Summer Research Conference, June 18-22, 2006, Snowbird, Utah

DOWNLOAD NOW »

Author: Jacob E. Goodman

Publisher: American Mathematical Soc.

ISBN: 0821842390

Category: Mathematics

Page: 556

View: 9046

This volume contains nineteen survey papers describing the state of current research in discrete and computational geometry as well as a set of open problems presented at the 2006 AMS-IMS-SIAM Summer Research Conference Discrete and Computational Geometry--Twenty Years Later, held in Snowbird, Utah, in June 2006. Topics surveyed include metric graph theory, lattice polytopes, the combinatorial complexity of unions of geometric objects, line and pseudoline arrangements, algorithmic semialgebraic geometry, persistent homology, unfolding polyhedra, pseudo-triangulations, nonlinear computational geometry, $k$-sets, and the computational complexity of convex bodies.

Discrete and Computational Geometry

Japanese Conference, JCDCG 2002, Tokyo, Japan, December 6-9, 2002, Revised Papers

DOWNLOAD NOW »

Author: Jin Akiyama,Mikio Kano

Publisher: Springer Science & Business Media

ISBN: 3540207767

Category: Mathematics

Page: 292

View: 5020

Discrete and Computational Geometry

Papers from the DIMACS Special Year

DOWNLOAD NOW »

Author: Jacob E. Goodman,Richard D. Pollack,William L. Steiger

Publisher: American Mathematical Soc.

ISBN: 9780821871010

Category: Mathematics

Page: 378

View: 4668

The first DIMACS special year, held during 1989-1990, was devoted to discrete and computational geometry. More than 200 scientists, both long- and short-term visitors, came to DIMACS to participate in the special year activities. Among the highlights were six workshops at Rutgers and Princeton Universities that defined the focus for much of the special year. The workshops addressed the following topics: geometric complexity, probabilistic methods in discrete and computational geometry, polytopes and convex sets, arrangements, and algebraic and practical issues in geometric computation. This volume presents some of the results growing out of the workshops and the special year activities. Containing both survey articles and research papers, this collection presents an excellent overview of significant recent progress in discrete and computational geometry. The diversity of these papers demonstrate how geometry continues to provide a vital source of ideas in theoretical computer science and discrete mathematics as well as fertile ground for interaction and simulation between the two disciplines.

Discrete and Computational Geometry

The Goodman-Pollack Festschrift

DOWNLOAD NOW »

Author: Boris Aronov,Saugata Basu,Janos Pach,Micha Sharir

Publisher: Springer Science & Business Media

ISBN: 3642555667

Category: Mathematics

Page: 853

View: 4729

An impressive collection of original research papers in discrete and computational geometry, contributed by many leading researchers in these fields, as a tribute to Jacob E. Goodman and Richard Pollack, two of the ‘founding fathers’ of the area, on the occasion of their 2/3 x 100 birthdays. The topics covered by the 41 papers provide professionals and graduate students with a comprehensive presentation of the state of the art in most aspects of discrete and computational geometry, including geometric algorithms, study of arrangements, geometric graph theory, quantitative and algorithmic real algebraic geometry, with important connections to algebraic geometry, convexity, polyhedral combinatorics, the theory of packing, covering, and tiling. The book serves as an invaluable source of reference in this discipline.

Handbook of Discrete and Computational Geometry, Third Edition

DOWNLOAD NOW »

Author: Csaba D. Toth,Joseph O'Rourke,Jacob E. Goodman

Publisher: CRC Press

ISBN: 1351645919

Category: Computers

Page: 1928

View: 1409

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in ?elds as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed signi?cantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young ?eld of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.