Search results for: design-of-high-strength-steel-reinforced-concrete-columns

Design of High Strength Steel Reinforced Concrete Columns

Author : Sing-Ping Chiew
File Size : 72.50 MB
Format : PDF, ePub
Download : 366
Read : 756
Download »
This book is the companion volume to Design Examples for High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. Guidance is much needed on the design of high strength steel reinforced concrete (SRC) columns beyond the remit of Eurocode 4. Given the much narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete, there is a clear need for design beyond the guidelines. This book looks at the design of SRC columns using high strength concrete, high strength structural steel and high strength reinforcing steel materials – columns with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. The companion volume provides detailed worked examples on use of these high strength materials. This book is written primarily for structural engineers and designers who are familiar with basic EC4 design, and should also be useful to civil engineering undergraduate and graduate students who are studying composite steel concrete design and construction. Equations for design resistances are presented clearly so that they can be easily programmed into design spreadsheets for ease of use.

Design of Concrete Structures Using High strength Steel Reinforcement

Author : Bahram M. Shahrooz
File Size : 65.43 MB
Format : PDF, ePub
Download : 633
Read : 463
Download »
TRB's National Cooperative Highway Research Program (NCHRP) Report 679: Design of Concrete Structures Using High-Strength Steel Reinforcement evaulates the existing American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications relevant to the use of high-strength reinforcing steel and other grades of reinforcing steel having no discernible yield plateau. The report also includes recommended language to the AASHTO LRFD Bridge Design Specifications that will permit the use of high-strength reinforcing steel with specified yield strengths not greater than 100 ksi. The Appendixes to NCHRP Report 679 were published online.

Design Examples for High Strength Steel Reinforced Concrete Columns

Author : Sing-Ping Chiew
File Size : 30.76 MB
Format : PDF
Download : 141
Read : 418
Download »
This book is the companion volume to Design of High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. This book provides a large number of worked examples for the design of high strength steel reinforced concrete (SRC) columns. It is based on the Eurocode 4 approach, but goes beyond this to give much needed guidance on the narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete. Special considerations are given to resistance calculations that maximize the full strength of the materials, with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. These examples build on the design principles set out in the companion volume, allowing the readers to practice and understand the EC4 methodology easily. Structural engineers and designers who are familiar with basic EC4 design should find these design examples particularly helpful, whilst engineering undergraduate and graduate students who are studying composite steel concrete design and construction should easily gain further understanding from working through the worked examples which are set out in a step-by-step clearly fashion.

Design of Steel Concrete Composite Structures Using High Strength Materials

Author : J.Y. Richard Liew
File Size : 29.8 MB
Format : PDF
Download : 135
Read : 878
Download »
High-strength materials offer alternatives to frequently used materials for high-rise construction. A material of higher strength means a smaller member size is required to resist the design load. However, high-strength concrete is brittle, and high-strength thin steel plates are prone to local buckling. A solution to overcome such problems is to adopt a steel-concrete composite design in which concrete provides lateral restraint to steel plates against local buckling, and steel plates provide confinement to high-strength concrete. Design of Steel-Concrete Composite Structures Using High Strength Materials provides guidance on the design of composite steel-concrete structures using combined high-strength concretes and steels. The book includes a database of over 2,500 test results on composite columns to evaluate design methods, and presents calculations to determine critical parameters affecting the strength and ductility of high-strength composite columns. Finally, the book proposes design methods for axial-moment interaction curves in composite columns. This allows a unified approach to the design of columns with normal- and high-strength steel concrete materials. This book offers civil engineers, structural engineers, and researchers studying the mechanical performance of composite structures in the use of high-strength materials to design and construct advanced tall buildings. Presents the design and construction of composite structures using high-strength concrete and high-strength steel, complementing and extending Eurocode 4 standards Addresses a gap in design codes in the USA, China, Europe and Japan to cover composite structures using high-strength concrete and steel in a comprehensive way Gives insight into the design of concrete-filled steel tubes and concrete-encased steel members Suggests a unified approach to designing columns with normal- and high-strength steel and concrete

Long Reinforced Concrete Columns

Author : Reinforced Concrete Research Council (U.S.)
File Size : 62.71 MB
Format : PDF, Docs
Download : 628
Read : 913
Download »
Papers selected by the Reinforced Concrete Research Council of ASCE. This collection contains 13 papers reporting the results of a series of studies, begun in 1960, on the behavior of long reinforced concrete columns in frames. This report also includes additional studies limit design aspects of column and frame stability that were proposed in 1967. Findings from these studies, resulted in important changes in the slenderness provisions for reinforced concrete colums adopted in the 1983 American Concrete Institute building code.

Earthquake Engineering

Author : Alberto Bernal
File Size : 34.51 MB
Format : PDF, ePub
Download : 880
Read : 1065
Download »
The official proceedings of the 10th world conference on earthquake engineering in Madrid. Coverage includes damage in recent earthquakes, seismic risk and hazard, site effects, structural analysis and design, seismic codes and standards, urban planning, and expert system application.

Building Code Requirements for Structural Concrete ACI 318 05 and Commentary ACI 318R 05

Author : ACI Committee 318
File Size : 23.38 MB
Format : PDF, ePub, Docs
Download : 396
Read : 1244
Download »

Strength and Serviceability Criteria Reinforced Concrete Bridge Members Ultimate Design

Author : E. G. Paulet
File Size : 36.40 MB
Format : PDF
Download : 768
Read : 606
Download »
This manual is designed to be used in connection with the Standard specifications for highway bridges /AASHO/, adopted in 1961. It has been compiled to assist bridge engineers concerned with the proportioning of concrete members for conditions of ultimate loading. The emphasis is placed on design methods for reinforced concrete members whose behavior is limited by the ultimate stage of behavior at ultimate loading. When the safety limits of the materials are considered, the ultimate design method produces superior economy over the working stress design method.

INELASTIC DESIGN OF REINFORCED

Author : Ching-Ming Johnny Ho
File Size : 21.77 MB
Format : PDF, ePub, Docs
Download : 980
Read : 523
Download »
This dissertation, "Inelastic Design of Reinforced Concrete Beams and Limited Ductile High-strength Concrete Columns" by Ching-ming, Johnny, Ho, 何正銘, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled INELASTIC DESIGN OF REINFORCED CONCRETE BEAMS AND LIMITED DUCTILE HIGH-STRENGTH CONCRETE COLUMNS submitted by Ho Ching Ming Johnny for the degree of Doctor of Philosophy at The University of Hong Kong in January 2003 This thesis studies the inelastic analysis and design of normal- and high-strength reinforced concrete beams and high-strength reinforced concrete columns. Particular attention is given to the proposed design method of limited ductile high-strength reinforced concrete columns. Analytical studies on normal- and high-strength reinforced concrete beams and experimental research on high-strength reinforced concrete columns are conducted and discussed. To investigate the post-peak behaviour and flexural ductility performance of reinforced concrete beams and columns, the author proposes a new method of rigorous nonlinear moment-curvature analysis that incorporates the strain history effect of tension steel. The moment-curvature curves derived using the new method resemble more closely the actual post-peak behaviour of reinforced concrete members compared to their conventionally-derived counterparts. The results enable the author to derive: (1) a theoretical equation that correlates the curvature ductility factor of reinforced concrete beams to various structural parameters; (2) two sets of design ultimate concrete strains suitable for use with either the proposed equivalent rectangular concrete stress block or the equivalent rectangular stress block of BS 8110; and (3) a series of design charts that facilitates the concurrent design of flexural strength and ductility of reinforced concrete beams. A new parametric study using the proposed analysis method is also conducted to refine the author's previously-proposed equation on transverse steel content of limited ductile high-strength reinforced concrete columns. A series of high-strength reinforced concrete columns containing transverse reinforcement calculated in accordance with this refined equation are tested under compressive axial load and reversed cyclic inelastic displacements to assess its adequacy. These columns prove capable of achieving a curvature ductility factor close to 10, which is the commonly-accepted measure for limited ductile structures. They are subsequently compared with another series of columns containing transverse steel calculated in accordance with the shear requirement of BS 8110. The performance of the latter series is shown to be much worse than the former in terms of flexural strength and ductility. The influence of transverse steel configuration is investigated on some test specimens selected from these two series of columns. In addition, three column specimens are tested to investigate the effect of tension steel lap splice. The test results indicate that the lap splice should be located further away from the potential plastic hinge region. The author also proposes a rational evaluation of plastic hinge length, which could hitherto only be assessed empirically during experimental tests, using various methods that can be grouped into direct and indirect methods. The results are compared with the experimental data obtained from the majority of the column test specimens and with the experimental data obtained by other researchers, and they match closely. To facilitate the design of limited ductile hig

Code Requirements for Environmental Engineering Concrete Structures

Author :
File Size : 83.19 MB
Format : PDF, Mobi
Download : 758
Read : 622
Download »