Search results for: defects-in-microelectronic-materials-and-devices

Defects in Microelectronic Materials and Devices

Author : Daniel M. Fleetwood
File Size : 83.63 MB
Format : PDF, Mobi
Download : 639
Read : 179
Download »
Uncover the Defects that Compromise Performance and Reliability As microelectronics features and devices become smaller and more complex, it is critical that engineers and technologists completely understand how components can be damaged during the increasingly complicated fabrication processes required to produce them. A comprehensive survey of defects that occur in silicon-based metal-oxide semiconductor field-effect transistor (MOSFET) technologies, this book also discusses flaws in linear bipolar technologies, silicon carbide-based devices, and gallium arsenide materials and devices. These defects can profoundly affect the yield, performance, long-term reliability, and radiation response of microelectronic devices and integrated circuits (ICs). Organizing the material to build understanding of the problems and provide a quick reference for scientists, engineers and technologists, this text reviews yield- and performance-limiting defects and impurities in the device silicon layer, in the gate insulator, and/or at the critical Si/SiO2 interface. It then examines defects that impact production yield and long-term reliability, including: Vacancies, interstitials, and impurities (especially hydrogen) Negative bias temperature instabilities Defects in ultrathin oxides (SiO2 and silicon oxynitride) Take A Proactive Approach The authors condense decades of experience and perspectives of noted experimentalists and theorists to characterize defect properties and their impact on microelectronic devices. They identify the defects, offering solutions to avoid them and methods to detect them. These include the use of 3-D imaging, as well as electrical, analytical, computational, spectroscopic, and state-of-the-art microscopic methods. This book is a valuable look at challenges to come from emerging materials, such as high-K gate dielectrics and high-mobility substrates being developed to replace Si02 as the preferred gate dielectric material, and high-mobility substrates.

Defects and Impurities in Silicon Materials

Author : Yutaka Yoshida
File Size : 57.2 MB
Format : PDF, Mobi
Download : 215
Read : 1124
Download »
This book emphasizes the importance of the fascinating atomistic insights into the defects and the impurities as well as the dynamic behaviors in silicon materials, which have become more directly accessible over the past 20 years. Such progress has been made possible by newly developed experimental methods, first principle theories, and computer simulation techniques. The book is aimed at young researchers, scientists, and technicians in related industries. The main purposes are to provide readers with 1) the basic physics behind defects in silicon materials, 2) the atomistic modeling as well as the characterization techniques related to defects and impurities in silicon materials, and 3) an overview of the wide range of the research fields involved.

Rare Earth Implanted MOS Devices for Silicon Photonics

Author : Lars Rebohle
File Size : 69.13 MB
Format : PDF, ePub
Download : 720
Read : 803
Download »
The book concentrates on the microstructural, electric and optoelectronic properties of rare-earth implanted MOS structures and their use as light emitters in potential applications.

Microelectronic Materials

Author : C.R.M. Grovenor
File Size : 26.97 MB
Format : PDF, ePub
Download : 594
Read : 1021
Download »
This practical book shows how an understanding of structure, thermodynamics, and electrical properties can explain some of the choices of materials used in microelectronics, and can assist in the design of new materials for specific applications. It emphasizes the importance of the phase chemistry of semiconductor and metal systems for ensuring the long-term stability of new devices. The book discusses single-crystal and polycrystalline silicon, aluminium- and gold-based metallisation schemes, packaging semiconductor devices, failure analysis, and the suitability of various materials for optoelectronic devices and solar cells. It has been designed for senior undergraduates, graduates, and researchers in physics, electronic engineering, and materials science.

Frontiers in Physics 2019 Editor s Choice

Author : Alex Hansen
File Size : 31.62 MB
Format : PDF, Docs
Download : 212
Read : 184
Download »
Frontiers in Physics – FPHY – is now in its eighth year. Up to last year, the journal received a slowly increasing trickle of manuscripts, and then during the summer… Boom! The number of manuscripts we receive started increasing exponentially. This is of course a signal to us who are associated with the journal that we are on the right track to build a first-rate journal spanning the entire field of physics. And it is not the only signal. We also see it in other indicators such as the number of views and downloads, Impact Factor and the Cite Score. Should we be surprised at this increase? If I were to describe FPHY in one word, it would be “innovation”. Attaching the names of the reviewers that have endorsed publication permanently to the published paper is certainly in this class. It ensures that the reviewers are accountable; furthermore, the level of transparency this implies ensures that any conflict of interest is detected at the very beginning of the process. The review process itself is innovative. After an initial review that proceeds traditionally, the reviewers and authors enter a back-and-forth dialog that irons out any misunderstanding. The reviewers retain their anonymity throughout the process. The entire review process and any question concerning editorial decisions is fully in the hands of active scientists. The Frontiers staff is not allowed to make any such decision. They oversee the process and make sure that the manuscript and the process leading to publication or rejection upholds the standard. FPHY is of course a gold open access journal. This is the only scientific publication model that is compatible with the information revolution. A journal’s prestige is traditionally associated with how difficult it is to publish there. Exclusivity as criterion for desirability, is a mechanism we know very well from the consumer market. However, is this criterion appropriate for scientific publishing? It is almost by definition not possible to predict the importance of a new idea – otherwise it would not have been new. So, why should journals make decisions on publishing based on predicting the possible importance of a given work. This can only be properly assessed after publication. Frontiers has removed “importance” from the list of criteria for publication. That the work is new, is another matter: the work must be new and scientifically correct. It would seem that removing the criterion of “importance” would be a risky one, but it turns out not to be. The Specialty Chief Editors who lead the 18 sections that constitute FPHY, have made this selection of papers published in FPHY in 2019. We have chosen the papers that we have found most striking. Even though this is far from a random selection, they do give a good idea of what PFHY is about. Enjoy! We certainly did while making this selection. Professor Alex Hansen (Field Chief Editor)

Integrated Circuit Design for Radiation Environments

Author : Stephen J. Gaul
File Size : 72.30 MB
Format : PDF, Kindle
Download : 865
Read : 224
Download »
A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today’s space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.

Microelectronic Materials and Processes

Author : R.A. Levy
File Size : 62.35 MB
Format : PDF, Docs
Download : 155
Read : 1291
Download »
The primary thrust of very large scale integration (VLS!) is the miniaturization of devices to increase packing density, achieve higher speed, and consume lower power. The fabrication of integrated circuits containing in excess of four million components per chip with design rules in the submicron range has now been made possible by the introduction of innovative circuit designs and the development of new microelectronic materials and processes. This book addresses the latter challenge by assessing the current status of the science and technology associated with the production of VLSI silicon circuits. It represents the cumulative effort of experts from academia and industry who have come together to blend their expertise into a tutorial overview and cohesive update of this rapidly expanding field. A balance of fundamental and applied contributions cover the basics of microelectronics materials and process engineering. Subjects in materials science include silicon, silicides, resists, dielectrics, and interconnect metallization. Subjects in process engineering include crystal growth, epitaxy, oxidation, thin film deposition, fine-line lithography, dry etching, ion implantation, and diffusion. Other related topics such as process simulation, defects phenomena, and diagnostic techniques are also included. This book is the result of a NATO-sponsored Advanced Study Institute (AS!) held in Castelvecchio Pascoli, Italy. Invited speakers at this institute provided manuscripts which were edited, updated, and integrated with other contributions solicited from non-participants to this AS!.

Silicon Compatible Materials and Technologies for Advanced Integrated Processes Circuits and Emerging Applications 5

Author : F. Roozeboom
File Size : 76.69 MB
Format : PDF, ePub
Download : 190
Read : 1195
Download »

Charged Semiconductor Defects

Author : Edmund G. Seebauer
File Size : 72.8 MB
Format : PDF, ePub, Docs
Download : 157
Read : 1059
Download »
Defects in semiconductors have been studied for many years, in many cases with a view toward controlling their behaviour through various forms of “defect engineering”. For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. “Charged Defects in Semiconductors” details the current state of knowledge regarding the properties of the ionized defects that can affect the behaviour of advanced transistors, photo-active devices, catalysts, and sensors. Features: group IV, III-V, and oxide semiconductors; intrinsic and extrinsic defects; and, point defects, as well as defect pairs, complexes and clusters.

Applications of EPR in Radiation Research

Author : Anders Lund
File Size : 65.6 MB
Format : PDF, Docs
Download : 531
Read : 835
Download »
Applications of EPR in Radiation Research is a multi-author contributed volume presented in eight themes: I. Elementary radiation processes (in situ and low temperature radiolysis, quantum solids); II: Solid state radiation chemistry (crystalline, amorphous and heterogeneous systems); III: Biochemistry, biophysics and biology applications (radicals in biomaterials, spin trapping, free-radical-induced DNA damage); IV: Materials science (polymeric and electronic materials, materials for treatment of nuclear waste, irradiated food); V: Radiation metrology (EPR-dosimetry, retrospective and medical applications); VI: Geological dating; VII: Advanced techniques (PELDOR, ESE and ENDOR spectroscopy, matrix isolation); VIII: Theoretical tools (density-functional calculations, spectrum simulations).