Search results for: deep-learning-neural-networks

Deep Learning Neural Networks

Author : Daniel Graupe
File Size : 20.8 MB
Format : PDF, Kindle
Download : 649
Read : 232
Download »
Deep Learning Neural Networks is the fastest growing field in machine learning. It serves as a powerful computational tool for solving prediction, decision, diagnosis, detection and decision problems based on a well-defined computational architecture. It has been successfully applied to a broad field of applications ranging from computer security, speech recognition, image and video recognition to industrial fault detection, medical diagnostics and finance. This comprehensive textbook is the first in the new emerging field. Numerous case studies are succinctly demonstrated in the text. It is intended for use as a one-semester graduate-level university text and as a textbook for research and development establishments in industry, medicine and financial research.

MATLAB Deep Learning

Author : Phil Kim
File Size : 35.1 MB
Format : PDF, Docs
Download : 910
Read : 472
Download »
Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

Neural Networks and Deep Learning

Author : Charu C. Aggarwal
File Size : 59.7 MB
Format : PDF, Mobi
Download : 503
Read : 441
Download »
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Principles Of Artificial Neural Networks Basic Designs To Deep Learning 4th Edition

Author : Graupe Daniel
File Size : 81.44 MB
Format : PDF
Download : 245
Read : 676
Download »
The field of Artificial Neural Networks is the fastest growing field in Information Technology and specifically, in Artificial Intelligence and Machine Learning.This must-have compendium presents the theory and case studies of artificial neural networks. The volume, with 4 new chapters, updates the earlier edition by highlighting recent developments in Deep-Learning Neural Networks, which are the recent leading approaches to neural networks. Uniquely, the book also includes case studies of applications of neural networks — demonstrating how such case studies are designed, executed and how their results are obtained.The title is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.

Machine Learning

Author : Matthew Harper
File Size : 56.8 MB
Format : PDF, Kindle
Download : 120
Read : 715
Download »
This Book Includes: Neural Networks and Deep Learning! Book 1) Neural Networks: Step-by-Step | Understand How Neural Networks Work, Starting With Simple Ideas (Machine Learning Series Book 1) Machines are observing your habits, learning your patterns and adjusting their behaviour accordingly. Understand the concepts behind this amazing technology, step-by-step. Neural Networks are the key component A machine capable of learning is already here, it is real and it is exciting. Many may not be aware of it but it already plays an important role in our lives in many ways. Ever wonder how all those lists of websites can come up so quickly when you do a Google search? What about how Amazon knows exactly what to recommend to you every time you visit their website? And what about how Netflix can choose a list of shows that suit your taste perfectly? Understand how a machine learns How these computers are capable of doing all of these things is the subject of this book. Using this book as a guide, we'll come to understand how the art of neural networks has made it possible for computer science to turn in a whole new direction, opening the doors to an amazing new era of technology. A complex topic made simple Even as a novice in this industry, you will understand the basics of what neural networks are, how they work, and the many tasks you can apply them to, including: Algorithms and how they work The concepts behind neural networks The basic architecture of a neural network The different technical aspects of these programs The different types of neural networks Book 2) Deep Learning: Step-by-Step | A Sensible Guide Presenting the Concepts of Deep Learning With Real-World Examples (Machine Learning Series Book 2) We exist at a time that only a half-century ago was the stuff of science fiction. Discover how deep learning have the ability to do things never thought possible. Understand how Deep Learning works Have you ever wondered how large corporations like Amazon, Google, Facebook, and Twitter know so much about you? How do the same advertisements keep showing up wherever you go? Ever used Google Translate to communicate with someone who didn't speak your language? The reality is that deep learning and its predecessor, machine learning, has had a hand with all of it. Grasp the concept behind it Matthew Harper is the author of the machine learning series and an entrepreneur. Having a Master's Degree in engineering allows him to write both from experience and expertise. He has built an intelligent machine himself and brings his knowledge to you in an educational way.Deep learning has probably become one of the most complex developments that mankind has created to date. Anyone interested in the future would find deep learning to be a fascinating subject. This new and innovative form of computer science is already changing the way we live our lives, making things easier, faster, and more efficient. Simple enough for the layman This book will explain to you in simple layman's terms the basic foundation and concept of deep learning and how it works, including: How deep learning came about and the basic concept behind it The different aspects of deep learning The different types of machine learning and what they are used for Basic understanding of how it works Several applications of the technology already in use today What the future holds for you and deep learning

Machine Intelligence

Author : Suresh Samudrala
File Size : 68.56 MB
Format : PDF, Docs
Download : 855
Read : 857
Download »
Artificial intelligence and machine learning are considered as hot technologies of this century. As these technologies move from research labs to enterprise data centers, the need for skilled professionals is continuously on the rise. This book is intended for IT and business professionals looking to gain proficiency in these technologies but are turned off by the complex mathematical equations. This book is also useful for students in the area of artificial intelligence and machine learning to gain a conceptual understanding of the algorithms and get an industry perspective. This book is an ideal place to start your journey as • Core concepts of machine learning algorithms are explained in plain English using illustrations, data tables and examples • Intuitive meaning of the mathematics behind popular machine learning algorithms explained • Covers classical machine learning, neural networks and deep learning algorithms At a time when the IT industry is focusing on reskilling its vast human resources, Machine intelligence is a very timely publication. It has a simple approach that builds up from basics, which would help software engineers and students looking to learn about the field as well as those who might have started off without the benefit of a structured introduction or sound basics. Highly recommended. - Siddhartha S, Founder and CEO of Intain - Financial technology startup Suresh has written a very accessible book for practitioners. The book has depth yet avoids excessive mathematics. The coverage of the subject is very good and has most of the concepts required for understanding machine learning if someone is looking for depth. For senior management, it will provide a good overview. It is well written. I highly recommend it. - Whee Teck ONG, CEO of Trusted Source and VP of Singapore Computer Society

Deep Learning

Author : Frank Millstein
File Size : 40.85 MB
Format : PDF
Download : 564
Read : 667
Download »
Deep Learning - 2 BOOK BUNDLE!! Deep Learning with Keras This book will introduce you to various supervised and unsupervised deep learning algorithms like the multilayer perceptron, linear regression and other more advanced deep convolutional and recurrent neural networks. You will also learn about image processing, handwritten recognition, object recognition and much more. Furthermore, you will get familiar with recurrent neural networks like LSTM and GAN as you explore processing sequence data like time series, text, and audio. The book will definitely be your best companion on this great deep learning journey with Keras introducing you to the basics you need to know in order to take next steps and learn more advanced deep neural networks. Here Is a Preview of What You’ll Learn Here… The difference between deep learning and machine learning Deep neural networks Convolutional neural networks Building deep learning models with Keras Multi-layer perceptron network models Activation functions Handwritten recognition using MNIST Solving multi-class classification problems Recurrent neural networks and sequence classification And much more... Convolutional Neural Networks in Python This book covers the basics behind Convolutional Neural Networks by introducing you to this complex world of deep learning and artificial neural networks in a simple and easy to understand way. It is perfect for any beginner out there looking forward to learning more about this machine learning field. This book is all about how to use convolutional neural networks for various image, object and other common classification problems in Python. Here, we also take a deeper look into various Keras layer used for building CNNs we take a look at different activation functions and much more, which will eventually lead you to creating highly accurate models able of performing great task results on various image classification, object classification and other problems. Therefore, at the end of the book, you will have a better insight into this world, thus you will be more than prepared to deal with more complex and challenging tasks on your own. Here Is a Preview of What You’ll Learn In This Book… Convolutional neural networks structure How convolutional neural networks actually work Convolutional neural networks applications The importance of convolution operator Different convolutional neural networks layers and their importance Arrangement of spatial parameters How and when to use stride and zero-padding Method of parameter sharing Matrix multiplication and its importance Pooling and dense layers Introducing non-linearity relu activation function How to train your convolutional neural network models using backpropagation How and why to apply dropout CNN model training process How to build a convolutional neural network Generating predictions and calculating loss functions How to train and evaluate your MNIST classifier How to build a simple image classification CNN And much, much more! Get this book bundle NOW and SAVE money!

Deep Learning with Keras

Author : Antonio Gulli
File Size : 41.31 MB
Format : PDF, ePub, Docs
Download : 876
Read : 613
Download »
Get to grips with the basics of Keras to implement fast and efficient deep-learning modelsAbout This Book* Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games* See how various deep-learning models and practical use-cases can be implemented using Keras* A practical, hands-on guide with real-world examples to give you a strong foundation in KerasWho This Book Is ForIf you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.What You Will Learn* Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm* Fine-tune a neural network to improve the quality of results* Use deep learning for image and audio processing* Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases* Identify problems for which Recurrent Neural Network (RNN) solutions are suitable* Explore the process required to implement Autoencoders* Evolve a deep neural network using reinforcement learningIn DetailThis book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer.Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks.Style and approachThis book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras.

Deep Learning with Python

Author : Mark Graph
File Size : 82.43 MB
Format : PDF, Mobi
Download : 996
Read : 1148
Download »
This book doesn't have any superpowers or magic formula to help you master the art of neural networks and deep learning. We believe that such learning is all in your heart. You need to learn a concept by heart and then brainstorm its different possibilities. I don't claim that after reading this book you will become an expert in Python and Deep Learning Neural Networks. Instead, you will, for sure, have a basic understanding of deep learning and its implications and real-life applications. Most of the time, what confuses us is the application of a certain thing in our lives. Once we know that, we can relate the subject to that particular thing and learn. An interesting thing is that neural networks also learn the same way. This makes it easier to learn about them when we know the basics. Let's take a look at what this book has to offer: ● The basics of Python including data types, operators and numbers. ● Advanced programming in Python with Python expressions, types and much more. ● A comprehensive overview of deep learning and its link to the smart systems that we are now building. ● An overview of how artificial neural networks work in real life. ● An overview of PyTorch. ● An overview of TensorFlow. ● An overview of Keras. ● How to create a convolutional neural network. ● A comprehensive understanding of deep learning applications and its ethical implications, including in the present and future. This book offers you the basic knowledge about Python and Deep Learning Neural Networks that you will need to lay the foundation for future studies. This book will start you on the road to mastering the art of deep learning neural networks. When I say that I don't have the magic formula to make you learn, I mean it. My point is that you should learn Python coding and Python libraries to build neural networks by practicing hard. The more you practice, the better it is for your skills. It is only after thorough and in depth practice that you will be able to create your own programs. Unlike other books, I don't claim that this book will make you a master of deep learning after a single read. That's not realistic, in fact, it's even a bit absurd. What I claim is that you will definitely learn about the basics. The rest is practice. The more you practice the better you code.

Deep Learning and Neural Networks Concepts Methodologies Tools and Applications

Author : Management Association, Information Resources
File Size : 73.31 MB
Format : PDF, Mobi
Download : 103
Read : 802
Download »
Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. Deep learning, a subset of artificial intelligence and machine learning, has been recognized in various real-world applications such as computer vision, image processing, and pattern recognition. The deep learning approach has opened new opportunities that can make such real-life applications and tasks easier and more efficient. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications is a vital reference source that trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. It also explores the latest concepts, algorithms, and techniques of deep learning and data mining and analysis. Highlighting a range of topics such as natural language processing, predictive analytics, and deep neural networks, this multi-volume book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of deep learning.

Machine Learning

Author : Herbert Jones
File Size : 89.3 MB
Format : PDF, ePub, Mobi
Download : 221
Read : 1097
Download »
3 comprehensive manuscripts in 1 book Machine Learning: An Essential Guide to Machine Learning for Beginners Who Want to Understand Applications, Artificial Intelligence, Data Mining, Big Data and More Neural Networks: An Essential Beginners Guide to Artificial Neural Networks and their Role in Machine Learning and Artificial Intelligence Deep Learning: An Essential Guide to Deep Learning for Beginners Who Want to Understand How Deep Neural Networks Work and Relate to Machine Learning and Artificial Intelligence Every day, someone is putting down a book on machine learning and giving up on learning about this revolutionary topic. How many of them miss out on furthering their career, and perhaps even the progress of our species...without even realizing? You see, most beginners make the same mistake when first delving into the topic of machine learning. They start off with a resource containing too many unrelatable facts, math, and programming lingo that will put them to sleep rather than ignite their passion. But that is about to change... This new book on machine learning will explain the concepts, methods and history behind machine learning, including how our computers became vastly more powerful but infinitely stupider than ever before and why every tech company and their grandmother want to keep track of us 24/7, siphoning data points from our electronic devices to be crunched by their programs that then become virtual crystal balls, predicting our thoughts before we even have them. Most of the book reads like science fiction because in a sense it is, far beyond what an average person would be willing to believe is happening. Here are some of the topics that are discussed in part 1 of this book: What is machine learning? What's the point of machine learning? History of machine learning Neural networks Matching the human brain Artificial Intelligence AI in literature Talking, walking robots Self-driving cars Personal voice-activated assistants Data mining Social networks Big Data Shadow profiles Biometrics Self-replicating machines And much, much more! Here are some of the topics that are discussed in part 2 of this book: Programming a smart(er) computer Composition Giving neural networks legs to stand on The magnificent wetware Personal assistants Tracking users in the real world Self-driving neural networks Taking everyone's job Quantum leap in computing Attacks on neural networks Neural network war Ghost in the machine No backlash And Much, Much More Here are some of the topics that are discussed in part 3 of this book: Improving the Scientific Method How It All Started Appeasing the Rebellious Spirits Quantum Approach To Science The Replication Crisis Evolving the Machine Brain The Future of Deep Learning Medicine with the Help of a Digital Genie And Much, Much More So if you want to learn about machine learning, click "add to cart"!

Deep Learning Classifiers with Memristive Networks

Author : Alex Pappachen James
File Size : 79.56 MB
Format : PDF, Kindle
Download : 806
Read : 842
Download »
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.

Neuronale Netze Selbst Programmieren

Author : Tariq Rashid
File Size : 54.78 MB
Format : PDF, Docs
Download : 528
Read : 1020
Download »
Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Dennoch verstehen nur wenige, wie Neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie Neuronale Netze arbeiten. Dafür brauchen Sie keine tieferen Mathematik-Kenntnisse, denn alle mathematischen Konzepte werden behutsam und mit vielen Illustrationen erläutert. Dann geht es in die Praxis: Sie programmieren Ihr eigenes Neuronales Netz mit Python und bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. Zum Schluss lassen Sie das Netz noch auf einem Raspberry Pi Zero laufen. - Tariq Rashid hat eine besondere Fähigkeit, schwierige Konzepte verständlich zu erklären, dadurch werden Neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Neural Networks and Deep Learning

Author : Pat Nakamoto
File Size : 50.33 MB
Format : PDF, Kindle
Download : 781
Read : 831
Download »
Ready to crank up a deep neural network to get your self-driving car pick up the kids from school? Want to add 'Neural Networks' and 'Deep Learning' to your LinkedIn profile? Well, hold on there... Before you embark on your epic journey into the world of deep learning, there is basic theory to march through first! Check out this exceptional bundle of 3 books... This bundle contains 3 books: Book 1: Neural Networks & Deep Learning: Deep Learning explained to your granny - A visual introduction for beginners who want to make their own Deep Learning Neural Network... What you will gain from this book: * A deep understanding of how Deep Learning works * A basics comprehension on how to build a Deep Neural Network from scratch Who this book is for: * Beginners who want to approach the topic, but are too afraid of complex math to start! * Two main Types of Machine Learning Algorithms * A practical example of Unsupervised Learning * What are Neural Networks? * McCulloch-Pitts's Neuron * Types of activation function * Types of network architectures * Learning processes * Advantages and disadvantages * Let us give a memory to our Neural Network * The example of book writing Software * Deep learning: the ability of learning to learn * How does Deep Learning work? * Main architectures and algorithms * Main types of DNN * Available Frameworks and libraries * Convolutional Neural Networks * Tunnel Vision * Convolution * The right Architecture for a Neural Network * Test your Neural Network * A general overview of Deep Learning * What are the limits of Deep Learning? * Deep Learning: the basics * Layers, Learning paradigms, Training, Validation * Main architectures and algorithms * Models for Deep Learning * Probabilistic graphic models * Restricted Boltzmann Machines * Deep Belief Networks Book2: Deep Learning: Deep Learning explained to your granny - A guide for Beginners... What's Inside? * A general overview of Deep Learning * What are the limits of Deep Learning? * Deep Learning: the basics * Layers, Learning paradigms, Training, Validation * Main architectures and algorithms * Convolutional Neural Networks * Models for Deep Learning * Probabilistic graphic models * Restricted Boltzmann Machines * Deep Belief Networks * Available Frameworks and libraries * TensorFlow Book 3: Blockchain Blueprint: The ultimate guide to understanding blockchain, cryptocurrencies, smart contracts and the future of money The current emerging innovation of this decade may be the connected world of computing relying on blockchain encryption. The attention given to this technology by global giant players suggests that it will become the operational philosophy of the economic system of the future, ranging across many industries. Blockchain can become the solution we needed for speeding up the economy and transactions in order to keep up with our multi-device connected world. In this book, high tech expert Pat Nakamoto answers your questions concerning the future of Blockchain technology along with addressing different major developments linked to it, like Smart Contracts, Fintech and Ethereum. Hit download. Now!

Neural Networks with R

Author : Giuseppe Ciaburro
File Size : 60.27 MB
Format : PDF, ePub, Docs
Download : 829
Read : 302
Download »
Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.

Artificial Neural Networks and Machine Learning ICANN 2016

Author : Alessandro E.P. Villa
File Size : 74.86 MB
Format : PDF, Mobi
Download : 241
Read : 1254
Download »
The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions. They were organized in topical sections named: from neurons to networks; networks and dynamics; higher nervous functions; neuronal hardware; learning foundations; deep learning; classifications and forecasting; and recognition and navigation. There are 47 short paper abstracts that are included in the back matter of the volume.

Deep Learning with JavaScript

Author : Shanqing Cai
File Size : 45.4 MB
Format : PDF, Mobi
Download : 109
Read : 651
Download »
Deep learning has transformed the fields of computer vision, image processing, and natural language applications. Thanks to TensorFlow.js, now JavaScript developers can build deep learning apps without relying on Python or R. Deep Learning with JavaScript shows developers how they can bring DL technology to the web. Written by the main authors of the TensorFlow library, this new book provides fascinating use cases and in-depth instruction for deep learning apps in JavaScript in your browser or on Node. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Deep Learning with PyTorch

Author : Eli Stevens
File Size : 35.12 MB
Format : PDF, Kindle
Download : 395
Read : 171
Download »
Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you—and your deep learning skills—become more sophisticated. Deep Learning with PyTorch will make that journey engaging and fun. Summary Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you—and your deep learning skills—become more sophisticated. Deep Learning with PyTorch will make that journey engaging and fun. Foreword by Soumith Chintala, Cocreator of PyTorch. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Although many deep learning tools use Python, the PyTorch library is truly Pythonic. Instantly familiar to anyone who knows PyData tools like NumPy and scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s excellent for building quick models, and it scales smoothly from laptop to enterprise. Because companies like Apple, Facebook, and JPMorgan Chase rely on PyTorch, it’s a great skill to have as you expand your career options. It’s easy to get started with PyTorch. It minimizes cognitive overhead without sacrificing the access to advanced features, meaning you can focus on what matters the most - building and training the latest and greatest deep learning models and contribute to making a dent in the world. PyTorch is also a snap to scale and extend, and it partners well with other Python tooling. PyTorch has been adopted by hundreds of deep learning practitioners and several first-class players like FAIR, OpenAI, FastAI and Purdue. About the book Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This practical book quickly gets you to work building a real-world example from scratch: a tumor image classifier. Along the way, it covers best practices for the entire DL pipeline, including the PyTorch Tensor API, loading data in Python, monitoring training, and visualizing results. After covering the basics, the book will take you on a journey through larger projects. The centerpiece of the book is a neural network designed for cancer detection. You'll discover ways for training networks with limited inputs and start processing data to get some results. You'll sift through the unreliable initial results and focus on how to diagnose and fix the problems in your neural network. Finally, you'll look at ways to improve your results by training with augmented data, make improvements to the model architecture, and perform other fine tuning. What's inside Training deep neural networks Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Exploring code samples in Jupyter Notebooks About the reader For Python programmers with an interest in machine learning. About the author Eli Stevens had roles from software engineer to CTO, and is currently working on machine learning in the self-driving-car industry. Luca Antiga is cofounder of an AI engineering company and an AI tech startup, as well as a former PyTorch contributor. Thomas Viehmann is a PyTorch core developer and machine learning trainer and consultant. consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Proceedings of the 22nd Engineering Applications of Neural Networks Conference

Author : Lazaros S. Iliadis
File Size : 50.42 MB
Format : PDF, ePub, Docs
Download : 915
Read : 420
Download »
This book contains the proceedings of the 22nd EANN "Engineering Applications of Neural Networks" 2021 that comprise of research papers on both theoretical foundations and cutting-edge applications of artificial intelligence. Based on the discussed research areas, emphasis is given in advances of machine learning (ML) focusing on the following algorithms-approaches: Augmented ML, autoencoders, adversarial neural networks, blockchain-adaptive methods, convolutional neural networks, deep learning, ensemble methods, learning-federated learning, neural networks, recurrent -- long short-term memory. The application domains are related to: Anomaly detection, bio-medical AI, cyber-security, data fusion, e-learning, emotion recognition, environment, hyperspectral imaging, fraud detection, image analysis, inverse kinematics, machine vision, natural language, recommendation systems, robotics, sentiment analysis, simulation, stock market prediction.

Practical Convolutional Neural Networks

Author : Mohit Sewak
File Size : 66.23 MB
Format : PDF
Download : 590
Read : 321
Download »
One stop guide to implementing award-winning, and cutting-edge CNN architectures Key Features Fast-paced guide with use cases and real-world examples to get well versed with CNN techniques Implement CNN models on image classification, transfer learning, Object Detection, Instance Segmentation, GANs and more Implement powerful use-cases like image captioning, reinforcement learning for hard attention, and recurrent attention models Book Description Convolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative eCommerce and more.You will learn to create innovative solutions around image and video analytics to solve complex machine learning and computer vision related problems and implement real-life CNN models. This book starts with an overview of deep neural networkswith the example of image classification and walks you through building your first CNN for human face detector. We will learn to use concepts like transfer learning with CNN, and Auto-Encoders to build very powerful models, even when not much of supervised training data of labeled images is available. Later we build upon the learning achieved to build advanced vision related algorithms for object detection, instance segmentation, generative adversarial networks, image captioning, attention mechanisms for vision, and recurrent models for vision. By the end of this book, you should be ready to implement advanced, effective and efficient CNN models at your professional project or personal initiatives by working on complex image and video datasets. What you will learn From CNN basic building blocks to advanced concepts understand practical areas they can be applied to Build an image classifier CNN model to understand how different components interact with each other, and then learn how to optimize it Learn different algorithms that can be applied to Object Detection, and Instance Segmentation Learn advanced concepts like attention mechanisms for CNN to improve prediction accuracy Understand transfer learning and implement award-winning CNN architectures like AlexNet, VGG, GoogLeNet, ResNet and more Understand the working of generative adversarial networks and how it can create new, unseen images Who this book is for This book is for data scientists, machine learning and deep learning practitioners, Cognitive and Artificial Intelligence enthusiasts who want to move one step further in building Convolutional Neural Networks. Get hands-on experience with extreme datasets and different CNN architectures to build efficient and smart ConvNet models. Basic knowledge of deep learning concepts and Python programming language is expected.