Search results for: computational-problems-for-physics

Computational Problems for Physics

Author : Rubin H. Landau
File Size : 25.6 MB
Format : PDF, ePub, Docs
Download : 356
Read : 652
Download »
Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). It’s also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem. Readers also benefit from the following features: • Detailed explanations and solutions in various coding languages. • Problems are ranked based on computational and physics difficulty. • Basics of numerical methods covered in an introductory chapter. • Programming guidance via flowcharts and pseudocode. Rubin Landau is a Distinguished Professor Emeritus in the Department of Physics at Oregon State University in Corvallis and a Fellow of the American Physical Society (Division of Computational Physics). Manuel Jose Paez-Mejia is a Professor of Physics at Universidad de Antioquia in Medellín, Colombia.

Computational Physics

Author : Rubin H. Landau
File Size : 43.8 MB
Format : PDF, ePub, Docs
Download : 274
Read : 768
Download »
The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python programming language. Python has become very popular, particularly for physics education and large scientific projects. It is probably the easiest programming language to learn for beginners, yet is also used for mainstream scientific computing, and has packages for excellent graphics and even symbolic manipulations. The text is designed for an upper-level undergraduate or beginning graduate course and provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. As part of the teaching of using computers to solve scientific problems, the reader is encouraged to work through a sample problem stated at the beginning of each chapter or unit, which involves studying the text, writing, debugging and running programs, visualizing the results, and the expressing in words what has been done and what can be concluded. Then there are exercises and problems at the end of each chapter for the reader to work on their own (with model programs given for that purpose). The text could be used for a one-semester course on scientific computing. The relevant topics for that are covered in the first third of the book. The latter two-thirds of the text includes more physics and can be used for a two-semester course in computational physics, covering nonlinear ODEs, Chaotic Scattering, Fourier Analysis, Wavelet Analysis, Nonlinear Maps, Chaotic systems, Fractals and Parallel Computing. The e-book extends the paper version by including many codes, visualizations and applets, as well as links to video lectures. * A table at the beginning of each chapter indicates video lectures, slides, applets and animations. * Applets illustrate the results to be expected for projects in the book, and to help understand some abstract concepts (e.g. Chaotic Scattering) * The eBook's figures, equations, sections, chapters, index, table of contents, code listings, glossary, animations and executable codes (both Applets and Python programs) are linked, much like in a Web document. * Some equations are linked to their xml forms (which can be imported into Maple or Mathematica for manipulation). * The e-book will link to video-based lecture modules, held by principal author Professor Rubin Landau, that cover most every topic in the book.

A First Course in Computational Physics

Author : Paul L. DeVries
File Size : 83.42 MB
Format : PDF, ePub
Download : 455
Read : 905
Download »
Computers and computation are extremely important components of physics and should be integral parts of a physicist’s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) © 2011 IEEE, Published by the IEEE Computer Society

A Survey of Computational Physics

Author : Rubin H. Landau
File Size : 80.42 MB
Format : PDF
Download : 688
Read : 987
Download »
Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics. By treating science, applied mathematics, and computer science together, the book reveals how this knowledge base can be applied to a wider range of real-world problems than computational physics texts normally address. Designed for a one- or two-semester course, A Survey of Computational Physics will also interest anyone who wants a reference on or practical experience in the basics of computational physics. Accessible to advanced undergraduates Real-world problem-solving approach Java codes and applets integrated with text Companion Web site includes videos of lectures

Computational Physics

Author : J. M. Thijssen
File Size : 73.67 MB
Format : PDF, Mobi
Download : 198
Read : 1071
Download »
This book describes computational methods used in theoretical physics with emphasis on condensed matter applications.

Computational Physics

Author : Michael Bestehorn
File Size : 46.26 MB
Format : PDF, Docs
Download : 472
Read : 801
Download »
Drawing on examples from various areas of physics, this textbook introduces the reader to computer-based physics using Fortran® and Matlab®. It elucidates a broad palette of topics, including fundamental phenomena in classical and quantum mechanics, hydrodynamics and dynamical systems, as well as effects in field theories and macroscopic pattern formation described by (nonlinear) partial differential equations. A chapter on Monte Carlo methods is devoted to problems typically occurring in statistical physics. Contents Introduction Nonlinear maps Dynamical systems Ordinary differential equations I Ordinary differential equations II Partial differential equations I, basics Partial differential equations II, applications Monte Carlo methods (MC) Matrices and systems of linear equations Program library Solutions of the problems README and a short guide to FE-tools

Computational Physics

Author : R. C. Verma
File Size : 85.58 MB
Format : PDF, Docs
Download : 852
Read : 329
Download »
Personal Computers Have Become An Essential Part Of The Physics Curricula And Is Becoming An Increasingly Important Tool In The Training Of Students. The Present Book Is An Effort To Provide A Quality And Classroom Tested Resource Material.Salient Features * Topics Have Been Carefully Selected To Give A Flavour Of Computational Techniques In The Context Of A Wide Range Of Physics Problems. * Style Of Presentation Emphasis The Pedagogic Approach, Assuming No Previous Knowledge Of Either Programming In High-Level Language Or Numerical Techniques. * Profusely Illustrated With Diagrams, Graphic Outputs, Programming Hints, Algorithms And Source Codes. * Ideally Suited For Self-Study With A Pc On Desktop. * Accompanied With A Cd Rom With Source Codes Of Selected Problems Saving The User From Typing In The Source Code. * Can Be Adopted As A Two-Semester Course In Universities Running Courses Such As Computer Applications In Physics, Numerical Methods In Physics Or As An Additional Optional Paper In Nodal Centres Of Computer Applications Provided By Ugc In Different Universities. * Meets The Requirements Of Students Of Physics At Undergraduate And Post-Graduate Level In Particular And Physical Sciences, Engineering And Mathematics Students In General.This Book Is An Outcome Of A Book Project Granted By University Grants Commission New Delhi (India).

Number Crunching

Author : Paul J. Nahin
File Size : 36.45 MB
Format : PDF, ePub
Download : 860
Read : 418
Download »
More stimulating mathematics puzzles from bestselling author Paul Nahin How do technicians repair broken communications cables at the bottom of the ocean without actually seeing them? What's the likelihood of plucking a needle out of a haystack the size of the Earth? And is it possible to use computers to create a universal library of everything ever written or every photo ever taken? These are just some of the intriguing questions that best-selling popular math writer Paul Nahin tackles in Number-Crunching. Through brilliant math ideas and entertaining stories, Nahin demonstrates how odd and unusual math problems can be solved by bringing together basic physics ideas and today's powerful computers. Some of the outcomes discussed are so counterintuitive they will leave readers astonished. Nahin looks at how the art of number-crunching has changed since the advent of computers, and how high-speed technology helps to solve fascinating conundrums such as the three-body, Monte Carlo, leapfrog, and gambler's ruin problems. Along the way, Nahin traverses topics that include algebra, trigonometry, geometry, calculus, number theory, differential equations, Fourier series, electronics, and computers in science fiction. He gives historical background for the problems presented, offers many examples and numerous challenges, supplies MATLAB codes for all the theories discussed, and includes detailed and complete solutions. Exploring the intimate relationship between mathematics, physics, and the tremendous power of modern computers, Number-Crunching will appeal to anyone interested in understanding how these three important fields join forces to solve today's thorniest puzzles.

Applied Computational Physics

Author : Joseph F. Boudreau
File Size : 20.81 MB
Format : PDF, Kindle
Download : 736
Read : 945
Download »
Applied Computational Physics is a graduate-level text stressing three essential elements: advanced programming techniques, numerical analysis, and physics. The goal of the text is to provide students with essential computational skills that they will need in their careers, and to increase the confidence with which they write computer programs designed for their problem domain, physics. The physics problems give them an opportunity to reinforce their programmingskills, while the acquired programming skills augment their ability to solve physics problems. The C++ language is used throughout the text. Physics problems include Hamiltonian systems, chaoticsystems, percolation, critical phenomena, few-body and multi-body quantum systems, quantum field theory, simulation of radiation transport, and data modeling. The book, the fruit of a collaboration between a theoretical physicist and an experimental physicist, covers a broad diversity of topics from both viewpoints. Examples, program libraries, and additional documentation can be found at the companion website. Hundreds of original problems reinforce programming skills and increase theability to solve real-life physics problems at and beyond the graduate level.

Computational Physics

Author : Darren Walker
File Size : 41.90 MB
Format : PDF, ePub, Docs
Download : 258
Read : 689
Download »
This book is designed to provide the reader with a grounding in scientific programming and computational physics. It contains many exercises developed in the context of physics problems, and several examples of working programs to provide a solid basis on which to build. Computers are now ubiquitous and are an essential tool to any would-be scientific researcher. Computers can be used for a wide variety of scientific tasks, from the simple manipulation of data to simulations of real world events. The book intends to give the reader the confidence to start applying the methods presented to their own problems and research. It covers topics such as interpolation, integration, and the numerical solutions to both ordinary and partial differential equations. It discusses simple ideas, such as linear interpolation, and root finding through bisection, to more advanced concepts, such as the Gauss-Legendre quadrature, and the Runge-Kutta-Fehlberg algorithm to solve complex differential equations. It also contains a chapter on high performance computing that provides an introduction to parallel programming. Features: *Designed to provide the reader with a grounding in scientific programming and computational physics *Contains many exercises developed in the context of physics problems, and several examples of working programs to provide a solid basis on which to build

A First Course in Computational Physics

Author : Paul L. DeVries
File Size : 32.90 MB
Format : PDF, ePub
Download : 149
Read : 389
Download »
This text demonstrates how numerical methods are used to solve the problems that physicists face. Each chapter discusses different types of computational problems, with exercises developed around problems of physical interest. Students are led from discussions of relatively elementary problems and simple numerical approaches, through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. A disk is included with the book.

Computational Methods for Physics

Author : Joel Franklin
File Size : 31.61 MB
Format : PDF, Kindle
Download : 779
Read : 793
Download »
Presenting mathematical techniques for physical problems, this textbook is invaluable for undergraduate students in physics.

Basic Concepts in Computational Physics

Author : Benjamin A. Stickler
File Size : 51.90 MB
Format : PDF, ePub, Docs
Download : 680
Read : 770
Download »
This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.

Computational Physics

Author : Philipp O.J. Scherer
File Size : 67.88 MB
Format : PDF
Download : 236
Read : 701
Download »
This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills.

Computational Methods for Physicists

Author : Simon Sirca
File Size : 82.79 MB
Format : PDF, ePub, Docs
Download : 414
Read : 863
Download »
This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues as well as to the ways to optimize program execution speeds. Many examples are given throughout the chapters, and each chapter is followed by at least a handful of more comprehensive problems which may be dealt with, for example, on a weekly basis in a one- or two-semester course. In these end-of-chapter problems the physics background is pronounced, and the main text preceding them is intended as an introduction or as a later reference. Less stress is given to the explanation of individual algorithms. It is tried to induce in the reader an own independent thinking and a certain amount of scepticism and scrutiny instead of blindly following readily available commercial tools.

Computational Physics of Electric Discharges in Gas Flows

Author : Sergey T. Surzhikov
File Size : 65.84 MB
Format : PDF, ePub, Mobi
Download : 332
Read : 1000
Download »
Gas discharges are of interest for many processes in mechanics, manufacturing, materials science and aerophysics. To understand the physics behind the phenomena is of key importance for the effective use and development of gas discharge devices. This work treats methods of computational modeling of electrodischarge processes and dynamics of partially ionized gases. These methods are necessary to tackle problems of physical mechanics, physics of gas discharges and aerophysics. Particular attention is given to a solution of two-dimensional problems of physical mechanics of glow discharges. The use of glow discharges in aerospace technology is discussed as well.

An Introduction to Computational Physics

Author : Tao Pang
File Size : 63.50 MB
Format : PDF, ePub, Mobi
Download : 567
Read : 351
Download »
Thoroughly revised for its second edition, this advanced textbook provides an introduction to the basic methods of computational physics, and an overview of progress in several areas of scientific computing by relying on free software available from CERN. The book begins by dealing with basic computational tools and routines, covering approximating functions, differential equations, spectral analysis, and matrix operations. Important concepts are illustrated by relevant examples at each stage. The author also discusses more advanced topics, such as molecular dynamics, modeling continuous systems, Monte Carlo methods, genetic algorithm and programming, and numerical renormalization. It includes many more exercises. This can be used as a textbook for either undergraduate or first-year graduate courses on computational physics or scientific computation. It will also be a useful reference for anyone involved in computational research.

Computational Physics

Author : Steven E. Koonin
File Size : 77.98 MB
Format : PDF
Download : 735
Read : 337
Download »
Computational Physics is designed to provide direct experience in the computer modeling of physical systems. Its scope includes the essential numerical techniques needed to "do physics" on a computer. Each of these is developed heuristically in the text, with the aid of simple mathematical illustrations. However, the real value of the book is in the eight Examples and Projects, where the reader is guided in applying these techniques to substantial problems in classical, quantum, or statistical mechanics. These problems have been chosen to enrich the standard physics curriculum at the advanced undergraduate or beginning graduate level. The book will also be useful to physicists, engineers, and chemists interested in computer modeling and numerical techniques. Although the user-friendly and fully documented programs are written in FORTRAN, a casual familiarity with any other high-level language, such as BASIC, PASCAL, or C, is sufficient. The codes in BASIC and FORTRAN are available on the web at http://www.computationalphysics.info. They are available in zip format, which can be expanded on UNIX, Window, and Mac systems with the proper software. The codes are suitable for use (with minor changes) on any machine with a FORTRAN-77 compatible compiler or BASIC compiler. The FORTRAN graphics codes are available as well. However, as they were originally written to run on the VAX, major modifications must be made to make them run on other machines.

Computational Physics

Author : Franz Vesely
File Size : 25.61 MB
Format : PDF, ePub
Download : 894
Read : 380
Download »
The essential point in computational physics is not the use of machines, but the systematic application of numerical techniques in place of, and in addition to, analytical methods, in order to render accessible to computation as large a part of physical reality as possible. The various available techniques, disparate as they may seem, are traced back to only three main methodological sources; finite difference calculus, linear algebra, and stochastics. Each algorithm is carefully introduced and every computational tool is explained in terms of fundamental numerical techniques. Examples from statistical mechanics, quantum mechanics, and hydrodynamics are employed to bridge the gap between basic methodology and modern research. This second edition of Franz Vesely's renowned textbook takes into account the new vistas that have opened up recently in this rapidly evolving field. Furthermore, web-based sample programs augment the text.

Computational Complexity and Statistical Physics

Author : Allon Percus
File Size : 42.30 MB
Format : PDF, Kindle
Download : 831
Read : 1186
Download »
Computer science and physics have been closely linked since the birth of modern computing. In recent years, an interdisciplinary area has blossomed at the junction of these fields, connecting insights from statistical physics with basic computational challenges. Researchers have successfully applied techniques from the study of phase transitions to analyze NP-complete problems such as satisfiability and graph coloring. This is leading to a new understanding of the structure of these problems, and of how algorithms perform on them. Computational Complexity and Statistical Physics will serve as a standard reference and pedagogical aid to statistical physics methods in computer science, with a particular focus on phase transitions in combinatorial problems. Addressed to a broad range of readers, the book includes substantial background material along with current research by leading computer scientists, mathematicians, and physicists. It will prepare students and researchers from all of these fields to contribute to this exciting area.