Birational Geometry, Rational Curves, and Arithmetic

DOWNLOAD NOW »

Author: Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel

Publisher: Springer Science & Business Media

ISBN: 146146482X

Category: Mathematics

Page: 319

View: 6865

​​​​This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.

Algebraic Geometry and Number Theory

Summer School, Galatasaray University, Istanbul, 2014

DOWNLOAD NOW »

Author: Hussein Mourtada,Celal Cem Sarıoğlu,Christophe Soulé,Ayberk Zeytin

Publisher: Birkhäuser

ISBN: 331947779X

Category: Mathematics

Page: 232

View: 7031

This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

Surveys on Recent Developments in Algebraic Geometry

DOWNLOAD NOW »

Author: Izzet Coskun,Tommaso de Fernex,Angela Gibney

Publisher: American Mathematical Soc.

ISBN: 1470435578

Category: $K$-theory -- Higher algebraic $K$-theory -- $Q$- and plus-constructions

Page: 370

View: 8096

The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.

Rational Curves on Algebraic Varieties

DOWNLOAD NOW »

Author: Janos Kollar

Publisher: Springer Science & Business Media

ISBN: 3662032767

Category: Mathematics

Page: 321

View: 8642

The aim of this book is to provide an introduction to the structure theory of higher dimensional algebraic varieties by studying the geometry of curves, especially rational curves, on varieties. The main applications are in the study of Fano varieties and of related varieties with lots of rational curves on them. This Ergebnisse volume provides the first systematic introduction to this field of study. The book contains a large number of examples and exercises which serve to illustrate the range of the methods and also lead to many open questions of current research.

Birational Geometry of Algebraic Varieties

DOWNLOAD NOW »

Author: Janos Kollár,Shigefumi Mori

Publisher: Cambridge University Press

ISBN: 9780521060226

Category: Mathematics

Page: 254

View: 9361

This book provides the first comprehensive introduction to the circle of ideas developed around Mori's program.

Arithmetic Geometry

Clay Mathematics Institute Summer School, Arithmetic Geometry, July 17-August 11, 2006, Mathematisches Institut, Georg-August-Universität, Göttingen, Germany

DOWNLOAD NOW »

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

ISBN: 0821844768

Category: Mathematics

Page: 562

View: 1439

This book is based on survey lectures given at the 2006 Clay Summer School on Arithmetic Geometry at the Mathematics Institute of the University of Gottingen. Intended for graduate students and recent Ph.D.'s, this volume will introduce readers to modern techniques and outstanding conjectures at the interface of number theory and algebraic geometry. The main focus is rational points on algebraic varieties over non-algebraically closed fields. Do they exist? If not, can this be proven efficiently and algorithmically? When rational points do exist, are they finite in number and can they be found effectively? When there are infinitely many rational points, how are they distributed? For curves, a cohesive theory addressing these questions has emerged in the last few decades. Highlights include Faltings' finiteness theorem and Wiles's proof of Fermat's Last Theorem. Key techniques are drawn from the theory of elliptic curves, including modular curves and parametrizations, Heegner points, and heights. The arithmetic of higher-dimensional varieties is equally rich, offering a complex interplay of techniques including Shimura varieties, the minimal model program, moduli spaces of curves and maps, deformation theory, Galois cohomology, harmonic analysis, and automorphic functions. However, many foundational questions about the structure of rational points remain open, and research tends to focus on properties of specific classes of varieties.

Automorphisms in Birational and Affine Geometry

Levico Terme, Italy, October 2012

DOWNLOAD NOW »

Author: Ivan Cheltsov,Ciro Ciliberto,Hubert Flenner,James McKernan,Yuri G. Prokhorov,Mikhail Zaidenberg

Publisher: Springer

ISBN: 3319056816

Category: Mathematics

Page: 518

View: 4659

The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference highlighted the close connections between the above-mentioned areas and promoted the exchange of knowledge and methods from adjacent fields.

Local and Global Methods in Algebraic Geometry

DOWNLOAD NOW »

Author: Nero Budur,Tommaso de Fernex,Roi Docampo,Kevin Tucker

Publisher: American Mathematical Soc.

ISBN: 1470434881

Category: Festschriften

Page: 355

View: 7856

This volume contains the proceedings of the conference Local and Global Methods in Algebraic Geometry, held from May 12–15, 2016, at the University of Illinois at Chicago, in honor of Lawrence Ein's 60th birthday. The articles cover a broad range of topics in algebraic geometry and related fields, including birational geometry and moduli theory, analytic and positive characteristic methods, geometry of surfaces, singularity theory, hyper-Kähler geometry, rational points, and rational curves.

Arakelov Geometry

DOWNLOAD NOW »

Author: Atsushi Moriwaki

Publisher: American Mathematical Soc.

ISBN: 1470410745

Category: Mathematics

Page: 285

View: 4738

The main goal of this book is to present the so-called birational Arakelov geometry, which can be viewed as an arithmetic analog of the classical birational geometry, i.e., the study of big linear series on algebraic varieties. After explaining classical results about the geometry of numbers, the author starts with Arakelov geometry for arithmetic curves, and continues with Arakelov geometry of arithmetic surfaces and higher-dimensional varieties. The book includes such fundamental results as arithmetic Hilbert-Samuel formula, arithmetic Nakai-Moishezon criterion, arithmetic Bogomolov inequality, the existence of small sections, the continuity of arithmetic volume function, the Lang-Bogomolov conjecture and so on. In addition, the author presents, with full details, the proof of Faltings' Riemann-Roch theorem. Prerequisites for reading this book are the basic results of algebraic geometry and the language of schemes.