Search results for: big-data-management-and-processing

Big Data Management and Processing

Author : Kuan-Ching Li
File Size : 25.38 MB
Format : PDF, ePub, Docs
Download : 597
Read : 678
Download »
From the Foreword: "Big Data Management and Processing is [a] state-of-the-art book that deals with a wide range of topical themes in the field of Big Data. The book, which probes many issues related to this exciting and rapidly growing field, covers processing, management, analytics, and applications... [It] is a very valuable addition to the literature. It will serve as a source of up-to-date research in this continuously developing area. The book also provides an opportunity for researchers to explore the use of advanced computing technologies and their impact on enhancing our capabilities to conduct more sophisticated studies." ---Sartaj Sahni, University of Florida, USA "Big Data Management and Processing covers the latest Big Data research results in processing, analytics, management and applications. Both fundamental insights and representative applications are provided. This book is a timely and valuable resource for students, researchers and seasoned practitioners in Big Data fields. --Hai Jin, Huazhong University of Science and Technology, China Big Data Management and Processing explores a range of big data related issues and their impact on the design of new computing systems. The twenty-one chapters were carefully selected and feature contributions from several outstanding researchers. The book endeavors to strike a balance between theoretical and practical coverage of innovative problem solving techniques for a range of platforms. It serves as a repository of paradigms, technologies, and applications that target different facets of big data computing systems. The first part of the book explores energy and resource management issues, as well as legal compliance and quality management for Big Data. It covers In-Memory computing and In-Memory data grids, as well as co-scheduling for high performance computing applications. The second part of the book includes comprehensive coverage of Hadoop and Spark, along with security, privacy, and trust challenges and solutions. The latter part of the book covers mining and clustering in Big Data, and includes applications in genomics, hospital big data processing, and vehicular cloud computing. The book also analyzes funding for Big Data projects.

Managing and Processing Big Data in Cloud Computing

Author : Kannan, Rajkumar
File Size : 90.18 MB
Format : PDF, Docs
Download : 139
Read : 685
Download »
Big data has presented a number of opportunities across industries. With these opportunities come a number of challenges associated with handling, analyzing, and storing large data sets. One solution to this challenge is cloud computing, which supports a massive storage and computation facility in order to accommodate big data processing. Managing and Processing Big Data in Cloud Computing explores the challenges of supporting big data processing and cloud-based platforms as a proposed solution. Emphasizing a number of crucial topics such as data analytics, wireless networks, mobile clouds, and machine learning, this publication meets the research needs of data analysts, IT professionals, researchers, graduate students, and educators in the areas of data science, computer programming, and IT development.

Large Scale and Big Data

Author : Sherif Sakr
File Size : 55.83 MB
Format : PDF, Kindle
Download : 774
Read : 277
Download »
Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments. The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-based deployment models. The book’s second section examines the usage of advanced Big Data processing techniques in different domains, including semantic web, graph processing, and stream processing. The third section discusses advanced topics of Big Data processing such as consistency management, privacy, and security. Supplying a comprehensive summary from both the research and applied perspectives, the book covers recent research discoveries and applications, making it an ideal reference for a wide range of audiences, including researchers and academics working on databases, data mining, and web scale data processing. After reading this book, you will gain a fundamental understanding of how to use Big Data-processing tools and techniques effectively across application domains. Coverage includes cloud data management architectures, big data analytics visualization, data management, analytics for vast amounts of unstructured data, clustering, classification, link analysis of big data, scalable data mining, and machine learning techniques.

Conquering Big Data with High Performance Computing

Author : Ritu Arora
File Size : 38.95 MB
Format : PDF
Download : 362
Read : 548
Download »
This book provides an overview of the resources and research projects that are bringing Big Data and High Performance Computing (HPC) on converging tracks. It demystifies Big Data and HPC for the reader by covering the primary resources, middleware, applications, and tools that enable the usage of HPC platforms for Big Data management and processing.Through interesting use-cases from traditional and non-traditional HPC domains, the book highlights the most critical challenges related to Big Data processing and management, and shows ways to mitigate them using HPC resources. Unlike most books on Big Data, it covers a variety of alternatives to Hadoop, and explains the differences between HPC platforms and Hadoop.Written by professionals and researchers in a range of departments and fields, this book is designed for anyone studying Big Data and its future directions. Those studying HPC will also find the content valuable.

Web Age Information Management

Author : Yunjun Gao
File Size : 48.26 MB
Format : PDF, Kindle
Download : 442
Read : 161
Download »
This book constitutes the refereed proceedings of six workshops of the 14th International Conference on Web-Age Information Management, WAIM 2013, held in Beidaihe, China, June 2013. The 37 revised full papers are organized in topical sections on the six following workshops: The International Workshop on Big Data Management on Emerging Hardware (HardBD 2013), the Second International Workshop on Massive Data Storage and Processing (MDSP 2013), the First International Workshop on Emergency Management in Big Data Age (BigEM 2013), the International Workshop on Trajectory Mining in Social Networks (TMSN 2013), the First International Workshop on Location-based Query Processing in Mobile Environments (LQPM 2013), and the First International Workshop on Big Data Management and Service (BDMS 2013).

Big Data Imperatives

Author : Soumendra Mohanty
File Size : 49.40 MB
Format : PDF, ePub
Download : 464
Read : 717
Download »
Big Data Imperatives, focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use. This book addresses the following big data characteristics: Very large, distributed aggregations of loosely structured data – often incomplete and inaccessible Petabytes/Exabytes of data Millions/billions of people providing/contributing to the context behind the data Flat schema's with few complex interrelationships Involves time-stamped events Made up of incomplete data Includes connections between data elements that must be probabilistically inferred Big Data Imperatives explains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability. Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this book intends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data.

Emerging Technologies and Applications in Data Processing and Management

Author : Ma, Zongmin
File Size : 66.88 MB
Format : PDF, Docs
Download : 674
Read : 587
Download »
Advances in web technology and the proliferation of sensors and mobile devices connected to the internet have resulted in the generation of immense data sets available on the web that need to be represented, saved, and exchanged. Massive data can be managed effectively and efficiently to support various problem-solving and decision-making techniques. Emerging Technologies and Applications in Data Processing and Management is a critical scholarly publication that examines the importance of data management strategies that coincide with advancements in web technologies. Highlighting topics such as geospatial coverages, data analysis, and keyword query, this book is ideal for professionals, researchers, academicians, data analysts, web developers, and web engineers.

Optimized Cloud Resource Management and Scheduling

Author : Wenhong Dr. Tian
File Size : 65.54 MB
Format : PDF, ePub, Mobi
Download : 582
Read : 469
Download »
Optimized Cloud Resource Management and Scheduling identifies research directions and technologies that will facilitate efficient management and scheduling of computing resources in cloud data centers supporting scientific, industrial, business, and consumer applications. It serves as a valuable reference for systems architects, practitioners, developers, researchers and graduate level students. Explains how to optimally model and schedule computing resources in cloud computing Provides in depth quality analysis of different load-balance and energy-efficient scheduling algorithms for cloud data centers and Hadoop clusters Introduces real-world applications, including business, scientific and related case studies Discusses different cloud platforms with real test-bed and simulation tools

The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy

Author : John MacIntyre
File Size : 88.13 MB
Format : PDF, Kindle
Download : 483
Read : 616
Download »
This book presents the proceedings of The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT-2020), held in Shanghai, China, on November 6, 2020. Due to the COVID-19 outbreak problem, SPIoT-2020 conference was held online by Tencent Meeting. It provides comprehensive coverage of the latest advances and trends in information technology, science and engineering, addressing a number of broad themes, including novel machine learning and big data analytics methods for IoT security, data mining and statistical modelling for the secure IoT and machine learning-based security detecting protocols, which inspire the development of IoT security and privacy technologies. The contributions cover a wide range of topics: analytics and machine learning applications to IoT security; data-based metrics and risk assessment approaches for IoT; data confidentiality and privacy in IoT; and authentication and access control for data usage in IoT. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals and provides a useful reference guide for newcomers to the IoT security and privacy field.

Security and Privacy Trends in Cloud Computing and Big Data

Author : Muhammad Imran Tariq
File Size : 31.57 MB
Format : PDF, Mobi
Download : 764
Read : 1127
Download »
It is essential for an organization to know before involving themselves in cloud computing and big data, what are the key security requirements for applications and data processing. Big data and cloud computing are integrated together in practice. Cloud computing offers massive storage, high computation power, and distributed capability to support processing of big data. In such an integrated environment the security and privacy concerns involved in both technologies become combined. This book discusses these security and privacy issues in detail and provides necessary insights into cloud computing and big data integration. It will be useful in enhancing the body of knowledge concerning innovative technologies offered by the research community in the area of cloud computing and big data. Readers can get a better understanding of the basics of cloud computing, big data, and security mitigation techniques to deal with current challenges as well as future research opportunities.