Bernhard Riemann 1826–1866

Turning Points in the Conception of Mathematics

DOWNLOAD NOW »

Author: Detlef Laugwitz

Publisher: Springer Science & Business Media

ISBN: 0817647775

Category: Mathematics

Page: 357

View: 4263

The name of Bernard Riemann is well known to mathematicians and physicists around the world. His name is indelibly stamped on the literature of mathematics and physics. This remarkable work, rich in insight and scholarship, is addressed to mathematicians, physicists, and philosophers interested in mathematics. It seeks to draw those readers closer to the underlying ideas of Riemann’s work and to the development of them in their historical context. This illuminating English-language version of the original German edition will be an important contribution to the literature of the history of mathematics.

Bernhard Riemann

gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge : collected papers

DOWNLOAD NOW »

Author: Bernhard Riemann

Publisher: N.A

ISBN: N.A

Category: Functions

Page: 911

View: 5754

Reassessing Riemann's Paper

On the Number of Primes Less Than a Given Magnitude

DOWNLOAD NOW »

Author: Walter Dittrich

Publisher: Springer

ISBN: 3319914820

Category: Mathematics

Page: 65

View: 7224

In this book, the author pays tribute to Bernhard Riemann (1826–1866), mathematician with revolutionary ideas, whose work on the theory of integration, the Fourier transform, the hypergeometric differential equation, etc. contributed immensely to mathematical physics. This book concentrates in particular on Riemann’s only work on prime numbers, including such then new ideas as analytical continuation in the complex plane and the product formula for entire functions. A detailed analysis of the zeros of the Riemann zeta function is presented. The impact of Riemann’s ideas on regularizing infinite values in field theory is also emphasized.

An Episodic History of Mathematics

Mathematical Culture Through Problem Solving

DOWNLOAD NOW »

Author: Steven G. Krantz

Publisher: MAA

ISBN: 0883857669

Category: Mathematics

Page: 381

View: 3523

An Episodic History of Mathematics will acquaint students and readers with mathematical language, thought, and mathematical life by means of historically important mathematical vignettes. It will also serve to help prospective teachers become more familiar with important ideas of in the history of mathematicsboth classical and modern.Contained within are wonderful and engaging stories and anecdotes about Pythagoras and Galois and Cantor and Poincar, which let readers indulge themselves in whimsy, gossip, and learning. The mathematicians treated here were complex individuals who led colorful and fascinating lives, and did fascinating mathematics. They remain interesting to us as people and as scientists.This history of mathematics is also an opportunity to have some fun because the focus in this text is also on the practicalgetting involved with the mathematics and solving problems. This book is unabashedly mathematical. In the course of reading this book, the neophyte will become involved with mathematics by working on the same problems that, for instance, Zeno and Pythagoras and Descartes and Fermat and Riemann worked on.This is a book to be read, therefore, with pencil and paper in hand, and a calculator or computer close by. All will want to experiment; to try things; and become a part of the mathematical process.

From Kant to Hilbert

DOWNLOAD NOW »

Author: William Bragg Ewald

Publisher: OUP Oxford

ISBN: 9780191523106

Category: Mathematics

Page: 709

View: 7778

Immanuel Kant's Critique of Pure Reason is widely taken to be the starting point of the modern period of mathematics while David Hilbert was the last great mainstream mathematician to pursue important nineteenth cnetury ideas. This two-volume work provides an overview of this important era of mathematical research through a carefully chosen selection of articles. They provide an insight into the foundations of each of the main branches of mathematics—algebra, geometry, number theory, analysis, logic and set theory—with narratives to show how they are linked. Classic works by Bolzano, Riemann, Hamilton, Dedekind, and Poincare are reproduced in reliable translations and many selections from writers such as Gauss, Cantor, Kronecker and Zermelo are here translated for the first time. The collection is an invaluable source for anyone wishing to gain an understanding of the foundation of modern mathematics.

Creators of Mathematical and Computational Sciences

DOWNLOAD NOW »

Author: Ravi P Agarwal,Syamal K Sen

Publisher: Springer

ISBN: 3319108700

Category: Mathematics

Page: 495

View: 1294

​The book records the essential discoveries of mathematical and computational scientists in chronological order, following the birth of ideas on the basis of prior ideas ad infinitum. The authors document the winding path of mathematical scholarship throughout history, and most importantly, the thought process of each individual that resulted in the mastery of their subject. The book implicitly addresses the nature and character of every scientist as one tries to understand their visible actions in both adverse and congenial environments. The authors hope that this will enable the reader to understand their mode of thinking, and perhaps even to emulate their virtues in life.

Resources for the Study of Real Analysis

DOWNLOAD NOW »

Author: Robert L. Brabenec

Publisher: MAA

ISBN: 9780883857373

Category: Mathematics

Page: 231

View: 7277

A collection of materials gathered by the author while teaching real analysis over a period of years.

Riemann, Topology, and Physics

DOWNLOAD NOW »

Author: Michael I. Monastyrsky

Publisher: Springer Science & Business Media

ISBN: 9780817647780

Category: Mathematics

Page: 215

View: 7630

The significantly expanded second edition of this book combines a fascinating account of the life and work of Bernhard Riemann with a lucid discussion of current interaction between topology and physics. The author, a distinguished mathematical physicist, takes into account his own research at the Riemann archives of Göttingen University and developments over the last decade that connect Riemann with numerous significant ideas and methods reflected throughout contemporary mathematics and physics. Special attention is paid in part one to results on the Riemann–Hilbert problem and, in part two, to discoveries in field theory and condensed matter.

Prime Obsession

Bernhard Riemann and the Greatest Unsolved Problem in Mathematics

DOWNLOAD NOW »

Author: John Derbyshire

Publisher: Joseph Henry Press

ISBN: 0309141257

Category: Science

Page: 446

View: 2768

In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.

30-Second Maths

The 50 Most Mind-Expanding Theories in Mathematics, Each Explained in Half a Minute

DOWNLOAD NOW »

Author: Richard J. Brown

Publisher: Icon Books Ltd

ISBN: 9781848313866

Category: Science

Page: 160

View: 1814

From Rubik's cubes to Godel's incompleteness theorem, everything mathematical explained, with colour illustrations, in half a minute. Maths is enjoying a resurgence in popularity. So how can you avoid being the only dinner guest who has no idea who Fermat was, or what he proved? The more you know about Maths, the less of a science it becomes. 30 Second Maths takes the top 50 most engaging mathematical theories, and explains them to the general reader in half a minute, using nothing more than two pages, 200 words and one picture. Read at your own pace, and discover that maths can be more fascinating than you ever imagined.