An Introduction to Statistical Learning

with Applications in R

DOWNLOAD NOW »

Author: Gareth James,Daniela Witten,Trevor Hastie,Robert Tibshirani

Publisher: Springer Science & Business Media

ISBN: 1461471389

Category: Mathematics

Page: 426

View: 7867

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

An Introduction to Statistical Learning

DOWNLOAD NOW »

Author: Robert Harrell

Publisher: Createspace Independent Publishing Platform

ISBN: 9781984173102

Category:

Page: 422

View: 6585

This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Machine Learning and Data Science

An Introduction to Statistical Learning Methods with R

DOWNLOAD NOW »

Author: Daniel D. Gutierrez

Publisher: Technics Publications

ISBN: 1634620984

Category: Computers

Page: 282

View: 1570

A practitioner’s tools have a direct impact on the success of his or her work. This book will provide the data scientist with the tools and techniques required to excel with statistical learning methods in the areas of data access, data munging, exploratory data analysis, supervised machine learning, unsupervised machine learning and model evaluation. Machine learning and data science are large disciplines, requiring years of study in order to gain proficiency. This book can be viewed as a set of essential tools we need for a long-term career in the data science field – recommendations are provided for further study in order to build advanced skills in tackling important data problem domains. The R statistical environment was chosen for use in this book. R is a growing phenomenon worldwide, with many data scientists using it exclusively for their project work. All of the code examples for the book are written in R. In addition, many popular R packages and data sets will be used.

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

DOWNLOAD NOW »

Author: Trevor Hastie,Robert Tibshirani,Jerome Friedman

Publisher: Springer Science & Business Media

ISBN: 0387216065

Category: Mathematics

Page: 536

View: 7495

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Introduction to Statistical Relational Learning

DOWNLOAD NOW »

Author: Lise Getoor,Ben Taskar

Publisher: MIT Press

ISBN: 0262072882

Category: Computers

Page: 586

View: 4543

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications. Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.

Learning From Data

An Introduction To Statistical Reasoning

DOWNLOAD NOW »

Author: Arthur Glenberg,Matthew Andrzejewski

Publisher: Routledge

ISBN: 1136676627

Category: Education

Page: 580

View: 4977

Learning from Data focuses on how to interpret psychological data and statistical results. The authors review the basics of statistical reasoning to helpstudents better understand relevant data that affecttheir everyday lives. Numerous examples based on current research and events are featured throughout.To facilitate learning, authors Glenberg and Andrzejewski: Devote extra attention to explaining the more difficult concepts and the logic behind them Use repetition to enhance students’ memories with multiple examples, reintroductions of the major concepts, and a focus on these concepts in the problems Employ a six-step procedure for describing all statistical tests from the simplest to the most complex Provide end-of-chapter tables to summarize the hypothesis testing procedures introduced Emphasizes how to choose the best procedure in the examples, problems and endpapers Focus on power with a separate chapter and power analyses procedures in each chapter Provide detailed explanations of factorial designs, interactions, and ANOVA to help students understand the statistics used in professional journal articles. The third edition has a user-friendly approach: Designed to be used seamlessly with Excel, all of the in-text analyses are conducted in Excel, while the book’s CD contains files for conducting analyses in Excel, as well as text files that can be analyzed in SPSS, SAS, and Systat Two large, real data sets integrated throughout illustrate important concepts Many new end-of-chapter problems (definitions, computational, and reasoning) and many more on the companion CD Online Instructor’s Resources includes answers to all the exercises in the book and multiple-choice test questions with answers Boxed media reports illustrate key concepts and their relevance to realworld issues The inclusion of effect size in all discussions of power accurately reflects the contemporary issues of power, effect size, and significance. Learning From Data, Third Edition is intended as a text for undergraduate or beginning graduate statistics courses in psychology, education, and other applied social and health sciences.

An Elementary Introduction to Statistical Learning Theory

DOWNLOAD NOW »

Author: Sanjeev Kulkarni,Gilbert Harman

Publisher: John Wiley & Sons

ISBN: 9780470641835

Category: Mathematics

Page: 209

View: 5408

"A joint endeavor from leading researchers in the fields of philosophy and electrical engineering An Introduction to Statistical Learning Theory provides a broad and accessible introduction to rapidly evolving field of statistical pattern recognition andstatistical learning theory. Exploring topics that are not often covered in introductory level books on statistical learning theory, including PAC learning, VC dimension, and simplicity, the authors present upper-undergraduate and graduate levels with the basic theory behind contemporary machine learning and uniquely suggest it serves as an excellent framework for philosophical thinking about inductive inference"--Back cover.

Introduction to Statistical Machine Learning

DOWNLOAD NOW »

Author: Masashi Sugiyama

Publisher: Morgan Kaufmann

ISBN: 0128023503

Category: Computers

Page: 534

View: 751

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus. Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning. Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials.

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

DOWNLOAD NOW »

Author: Nello Cristianini,John Shawe-Taylor

Publisher: Cambridge University Press

ISBN: 9780521780193

Category: Computers

Page: 189

View: 1570

This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications.

An Introduction to Statistical Methods and Data Analysis

DOWNLOAD NOW »

Author: R. Lyman Ott,Micheal T. Longnecker

Publisher: Cengage Learning

ISBN: 1305465520

Category: Mathematics

Page: 1296

View: 3022

Ott and Longnecker's AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Seventh Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.