An Introduction to Financial Option Valuation

Mathematics, Stochastics and Computation


Author: Desmond J. Higham

Publisher: Cambridge University Press

ISBN: 9780521547574

Category: Business & Economics

Page: 273

View: 957

This book is intended for use in a rigorous introductory PhD level course in econometrics, or in a field course in econometric theory. It covers the measure-theoretical foundation of probability theory, the multivariate normal distribution with its application to classical linear regression analysis, various laws of large numbers, central limit theorems and related results for independent random variables as well as for stationary time series, with applications to asymptotic inference of M-estimators, and maximum likelihood theory. Some chapters have their own appendices containing the more advanced topics and/or difficult proofs. Moreover, there are three appendices with material that is supposed to be known. Appendix I contains a comprehensive review of linear algebra, including all the proofs. Appendix II reviews a variety of mathematical topics and concepts that are used throughout the main text, and Appendix III reviews complex analysis. Therefore, this book is uniquely self-contained.

An Introduction to Computational Finance


Author: ™mr U?ur

Publisher: Imperial College Press

ISBN: 1848161921

Category: Mathematics

Page: 298

View: 7578

Although there are several publications on similar subjects, this book mainly focuses on pricing of options and bridges the gap between Mathematical Finance and Numerical Methodologies. The author collects the key contributions of several monographs and selected literature, values and displays their importance, and composes them here to create a work which has its own characteristics in content and style.This invaluable book provides working Matlab codes not only to implement the algorithms presented in the text, but also to help readers code their own pricing algorithms in their preferred programming languages. Availability of the codes under an Internet site is also offered by the author.Not only does this book serve as a textbook in related undergraduate or graduate courses, but it can also be used by those who wish to implement or learn pricing algorithms by themselves. The basic methods of option pricing are presented in a self-contained and unified manner, and will hopefully help readers improve their mathematical and computational backgrounds for more advanced topics.Errata(s)Errata

Mathematical Models, Methods and Applications


Author: Abul Hasan Siddiqi,Pammy Manchanda,Rashmi Bhardwaj

Publisher: Springer

ISBN: 9812879730

Category: Mathematics

Page: 298

View: 3062

The present volume contains invited talks of 11th biennial conference on “Emerging Mathematical Methods, Models and Algorithms for Science and Technology”. The main message of the book is that mathematics has a great potential to analyse and understand the challenging problems of nanotechnology, biotechnology, medical science, oil industry and financial technology. The book highlights all the features and main theme discussed in the conference. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world.

An Introduction to Exotic Option Pricing


Author: Peter Buchen

Publisher: CRC Press

ISBN: 1420091026

Category: Mathematics

Page: 296

View: 2918

In an easy-to-understand, nontechnical yet mathematically elegant manner, An Introduction to Exotic Option Pricing shows how to price exotic options, including complex ones, without performing complicated integrations or formally solving partial differential equations (PDEs). The author incorporates much of his own unpublished work, including ideas and techniques new to the general quantitative finance community. The first part of the text presents the necessary financial, mathematical, and statistical background, covering both standard and specialized topics. Using no-arbitrage concepts, the Black–Scholes model, and the fundamental theorem of asset pricing, the author develops such specialized methods as the principle of static replication, the Gaussian shift theorem, and the method of images. A key feature is the application of the Gaussian shift theorem and its multivariate extension to price exotic options without needing a single integration. The second part focuses on applications to exotic option pricing, including dual-expiry, multi-asset rainbow, barrier, lookback, and Asian options. Pushing Black–Scholes option pricing to its limits, the author introduces a powerful formula for pricing a class of multi-asset, multiperiod derivatives. He gives full details of the calculations involved in pricing all of the exotic options. Taking an applied mathematics approach, this book illustrates how to use straightforward techniques to price a wide range of exotic options within the Black–Scholes framework. These methods can even be used as control variates in a Monte Carlo simulation of a stochastic volatility model.

Stochastic Finance

An Introduction with Market Examples


Author: Nicolas Privault

Publisher: CRC Press

ISBN: 1466594039

Category: Business & Economics

Page: 441

View: 3058

Stochastic Finance: An Introduction with Market Examples presents an introduction to pricing and hedging in discrete and continuous time financial models without friction, emphasizing the complementarity of analytical and probabilistic methods. It demonstrates both the power and limitations of mathematical models in finance, covering the basics of finance and stochastic calculus, and builds up to special topics, such as options, derivatives, and credit default and jump processes. It details the techniques required to model the time evolution of risky assets. The book discusses a wide range of classical topics including Black–Scholes pricing, exotic and American options, term structure modeling and change of numéraire, as well as models with jumps. The author takes the approach adopted by mainstream mathematical finance in which the computation of fair prices is based on the absence of arbitrage hypothesis, therefore excluding riskless profit based on arbitrage opportunities and basic (buying low/selling high) trading. With 104 figures and simulations, along with about 20 examples based on actual market data, the book is targeted at the advanced undergraduate and graduate level, either as a course text or for self-study, in applied mathematics, financial engineering, and economics.

Option Theory with Stochastic Analysis

An Introduction to Mathematical Finance


Author: Fred Espen Benth

Publisher: Springer Science & Business Media

ISBN: 3642187862

Category: Business & Economics

Page: 162

View: 5258

This is a very basic and accessible introduction to option pricing, invoking a minimum of stochastic analysis and requiring only basic mathematical skills. It covers the theory essential to the statistical modeling of stocks, pricing of derivatives with martingale theory, and computational finance including both finite-difference and Monte Carlo methods.

An Elementary Introduction to Mathematical Finance

Options and Other Topics


Author: Sheldon M. Ross

Publisher: Cambridge University Press

ISBN: 9780521814294

Category: Business & Economics

Page: 253

View: 2827

Contains a new chapter on optimization methods in finance, a new section on Value at Risk and Conditional Value at Risk, plus much more.

Mathematics Today

Bulletin of the Institute of Mathematics and Its Applications


Author: N.A

Publisher: N.A


Category: Mathematics

Page: N.A

View: 859

Option Pricing and Estimation of Financial Models with R


Author: Stefano M. Iacus

Publisher: John Wiley & Sons

ISBN: 9781119990208

Category: Business & Economics

Page: 472

View: 1616

Presents inference and simulation of stochastic process in the field of model calibration for financial times series modelled by continuous time processes and numerical option pricing. Introduces the bases of probability theory and goes on to explain how to model financial times series with continuous models, how to calibrate them from discrete data and further covers option pricing with one or more underlying assets based on these models. Analysis and implementation of models goes beyond the standard Black and Scholes framework and includes Markov switching models, Lévy models and other models with jumps (e.g. the telegraph process); Topics other than option pricing include: volatility and covariation estimation, change point analysis, asymptotic expansion and classification of financial time series from a statistical viewpoint. The book features problems with solutions and examples. All the examples and R code are available as an additional R package, therefore all the examples can be reproduced.

Applied stochastic processes and control for Jump-diffusions

modeling, analysis, and computation


Author: Floyd B. Hanson

Publisher: Society for Industrial Mathematics

ISBN: 9780898716337

Category: Mathematics

Page: 443

View: 9049

This self-contained, practical, entry-level text integrates the basic principles of applied mathematics, applied probability, and computational science for a clear presentation of stochastic processes and control for jump-diffusions in continuous time. The author covers the important problem of controlling these systems and, through the use of a jump calculus construction, discusses the strong role of discontinuous and nonsmooth properties versus random properties in stochastic systems. The book emphasizes modeling and problem solving and presents sample applications in financial engineering and biomedical modeling. Computational and analytic exercises and examples are included throughout. While classical applied mathematics is used in most of the chapters to set up systematic derivations and essential proofs, the final chapter bridges the gap between the applied and the abstract worlds to give readers an understanding of the more abstract literature on jump-diffusions. An additional 160 pages of online appendices are available on a Web page that supplements the book.Audience This book is written for graduate students in science and engineering who seek to construct models for scientific applications subject to uncertain environments. Mathematical modelers and researchers in applied mathematics, computational science, and engineering will also find it useful, as will practitioners of financial engineering who need fast and efficient solutions to stochastic problems.Contents List of Figures; List of Tables; Preface; Chapter 1. Stochastic Jump and Diffusion Processes: Introduction; Chapter 2. Stochastic Integration for Diffusions; Chapter 3. Stochastic Integration for Jumps; Chapter 4. Stochastic Calculus for Jump-Diffusions: Elementary SDEs; Chapter 5. Stochastic Calculus for General Markov SDEs: Space-Time Poisson, State-Dependent Noise, and Multidimensions; Chapter 6. Stochastic Optimal Control: Stochastic Dynamic Programming; Chapter 7. Kolmogorov Forward and Backward Equations and Their Applications; Chapter 8. Computational Stochastic Control Methods; Chapter 9. Stochastic Simulations; Chapter 10. Applications in Financial Engineering; Chapter 11. Applications in Mathematical Biology and Medicine; Chapter 12. Applied Guide to Abstract Theory of Stochastic Processes; Bibliography; Index; A. Online Appendix: Deterministic Optimal Control; B. Online Appendix: Preliminaries in Probability and Analysis; C. Online Appendix: MATLAB Programs