Understanding Nonlinear Dynamics

DOWNLOAD NOW »

Author: Daniel Kaplan,Leon Glass

Publisher: Springer Science & Business Media

ISBN: 1461208238

Category: Mathematics

Page: 420

View: 7300

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.

Chaos

An Introduction to Dynamical Systems

DOWNLOAD NOW »

Author: Kathleen Alligood,Tim Sauer,J.A. Yorke

Publisher: Springer

ISBN: 3642592813

Category: Mathematics

Page: 603

View: 6040

BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

Chaos and Nonlinear Dynamics

An Introduction for Scientists and Engineers

DOWNLOAD NOW »

Author: Robert C. Hilborn

Publisher: Oxford University Press on Demand

ISBN: 9780198507239

Category: Mathematics

Page: 650

View: 4727

This is a comprehensive introduction to the exciting scientific field of nonlinear dynamics for students, scientists, and engineers, and requires only minimal prerequisites in physics and mathematics. The book treats all the important areas in the field and provides an extensive and up-to-date bibliography of applications in all fields of science, social science, economics, and even the arts.

Introduction to Applied Nonlinear Dynamical Systems and Chaos

DOWNLOAD NOW »

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

ISBN: 1475740670

Category: Mathematics

Page: 672

View: 5929

This volume is an introduction to applied nonlinear dynamics and chaos. The emphasis is on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains an extensive bibliography and a detailed glossary of terms.

Nonlinear Dynamics in Complex Systems

Theory and Applications for the Life-, Neuro- and Natural Sciences

DOWNLOAD NOW »

Author: Armin Fuchs

Publisher: Springer Science & Business Media

ISBN: 3642335527

Category: Mathematics

Page: 238

View: 578

With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified. This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz model), self-organization and pattern formation in complex systems (Synergetics), and models of dynamical properties of neurons (Hodgkin-Huxley, Fitzhugh-Nagumo and Hindmarsh-Rose). Part III may serve as a refresher and companion of some mathematical basics that have been forgotten or were not covered in basic math courses. Finally, the appendix contains an explicit derivation and basic numerical methods together with some programming examples as well as solutions to the exercises provided at the end of certain chapters. Throughout this book all derivations are as detailed and explicit as possible, and everybody with some knowledge of calculus should be able to extract meaningful guidance follow and apply the methods of nonlinear dynamics to their own work. “This book is a masterful treatment, one might even say a gift, to the interdisciplinary scientist of the future.” “With the authoritative voice of a genuine practitioner, Fuchs is a master teacher of how to handle complex dynamical systems.” “What I find beautiful in this book is its clarity, the clear definition of terms, every step explained simply and systematically.” (J.A.Scott Kelso, excerpts from the foreword)

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

DOWNLOAD NOW »

Author: John Guckenheimer,P.J. Holmes

Publisher: Springer Science & Business Media

ISBN: 1461211409

Category: Mathematics

Page: 462

View: 721

An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Nonlinear Dynamics, Mathematical Biology, And Social Science

Wise Use Of Alternative Therapies

DOWNLOAD NOW »

Author: Joshua M. Epstein

Publisher: CRC Press

ISBN: 0429973039

Category: Mathematics

Page: 180

View: 9837

These lectures develop simple models of complex social processes using nonlinear dynamics and mathematical biology. Dynamical analogies between seemingly disparate social and biological phenomena,revolutions and epidemics, arms races, and ecosystem dynamics,are revealed and exploited. Nonlinear Dynamics, Mathematical Biology, and Social Science invites social scientists to relax,in some cases abandon,the predominant assumption of perfectly informed utility maximization and explore social dynamics from such perspectives as epidemiology and predator-prey theory. The volume includes a concentrated course on nonlinear dynamical systems.

Perspectives of Nonlinear Dynamics:

DOWNLOAD NOW »

Author: E. Atlee Jackson

Publisher: CUP Archive

ISBN: 9780521426329

Category: Mathematics

Page: 520

View: 6998

The dynamics of physical, chemical, biological, or fluid systems generally must be described by nonlinear models, whose detailed mathematical solutions are not obtainable. To understand some aspects of such dynamics, various complementary methods and viewpoints are of crucial importance. In this book the perspectives generated by analytical, topological and computational methods, and interplays between them, are developed in a variety of contexts. This book is a comprehensive introduction to this field, suited to a broad readership, and reflecting a wide range of applications. Some of the concepts considered are: topological equivalence; embeddings; dimensions and fractals; Poincaré maps and map-dynamics; empirical computational sciences vis-á-vis mathematics; Ulam's synergetics; Turing's instability and dissipative structures; chaos; dynamic entropies; Lorenz and Rossler models; predator-prey and replicator models; FPU and KAM phenomena; solitons and nonsolitons; coupled maps and pattern dynamics; cellular automata.

An Introduction To Chaotic Dynamical Systems

DOWNLOAD NOW »

Author: Robert Devaney

Publisher: CRC Press

ISBN: 0429981937

Category: Science

Page: 360

View: 8990

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Nonlinear Dynamics and Chaos

DOWNLOAD NOW »

Author: J. M. T. Thompson,H. B. Stewart

Publisher: John Wiley & Sons

ISBN: 9780471876458

Category: Mathematics

Page: 437

View: 6648

Nonlinear dynamics and chaos involves the study of apparent random happenings within a system or process. The subject has wide applications within mathematics, engineering, physics and other physical sciences. Since the bestselling first edition was published, there has been a lot of new research conducted in the area of nonlinear dynamics and chaos. * Expands on the bestselling, highly regarded first edition * A new chapter which will cover the new research in the area since first edition * Glossary of terms and a bibliography have been added * All figures and illustrations will be 'modernised' * Comprehensive and systematic account of nonlinear dynamics and chaos, still a fast-growing area of applied mathematics * Highly illustrated * Excellent introductory text, can be used for an advanced undergraduate/graduate course text

Mathematical Methods for Scientists and Engineers

Linear and Nonlinear Systems

DOWNLOAD NOW »

Author: Peter B. Kahn

Publisher: Courier Corporation

ISBN: 0486435164

Category: Mathematics

Page: 469

View: 5197

Appropriate for advanced undergraduate and graduate students in a variety of scientific and engineering fields, this text introduces linear and nonlinear problems and their associated models. The first part covers linear systems, emphasizing perturbation or approximation techniques and asymptotic methods. The second part comprises nonlinear problems, including weakly nonlinear oscillatory systems and nonlinear difference equations. The two parts, both of which include exercises, merge smoothly, and many of the nonlinear techniques arise from the study of the linear systems. 1990 edition. 70 figures. 4 tables. Appendix. Index.

Applications of Chaos and Nonlinear Dynamics in Science and Engineering -

DOWNLOAD NOW »

Author: Santo Banerjee,Lamberto Rondoni

Publisher: Springer

ISBN: 3319170376

Category: Science

Page: 304

View: 3349

Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. his fourth volume concentrates on reviewing further relevant contemporary applications of chaotic and nonlinear dynamics as they apply to the various cuttingedge branches of science and engineering. This encompasses, but is not limited to, topics such as synchronization in complex networks and chaotic circuits, time series analysis, ecological and biological patterns, stochastic control theory and vibrations in mechanical systems. Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications.

Nonlinear Problems of Elasticity

DOWNLOAD NOW »

Author: S.S Antman

Publisher: Springer Science & Business Media

ISBN: 1475741472

Category: Mathematics

Page: 752

View: 6313

The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.

Chaos, Fractals, and Noise

Stochastic Aspects of Dynamics

DOWNLOAD NOW »

Author: Andrzej Lasota,Michael C. Mackey

Publisher: Springer Science & Business Media

ISBN: 146124286X

Category: Mathematics

Page: 474

View: 2944

The first edition of this book was originally published in 1985 under the ti tle "Probabilistic Properties of Deterministic Systems. " In the intervening years, interest in so-called "chaotic" systems has continued unabated but with a more thoughtful and sober eye toward applications, as befits a ma turing field. This interest in the serious usage of the concepts and techniques of nonlinear dynamics by applied scientists has probably been spurred more by the availability of inexpensive computers than by any other factor. Thus, computer experiments have been prominent, suggesting the wealth of phe nomena that may be resident in nonlinear systems. In particular, they allow one to observe the interdependence between the deterministic and probabilistic properties of these systems such as the existence of invariant measures and densities, statistical stability and periodicity, the influence of stochastic perturbations, the formation of attractors, and many others. The aim of the book, and especially of this second edition, is to present recent theoretical methods which allow one to study these effects. We have taken the opportunity in this second edition to not only correct the errors of the first edition, but also to add substantially new material in five sections and a new chapter.

Nonlinear Dynamics

Integrability, Chaos and Patterns

DOWNLOAD NOW »

Author: Muthusamy Lakshmanan,Shanmuganathan Rajaseekar

Publisher: Springer Science & Business Media

ISBN: 3642556884

Category: Mathematics

Page: 620

View: 5929

This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.

Nonlinear Dynamics and Chaos

With Applications to Physics, Biology, Chemistry, and Engineering

DOWNLOAD NOW »

Author: Steven H. Strogatz

Publisher: Hachette UK

ISBN: 0813349117

Category: Mathematics

Page: 500

View: 8464

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors. A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory. In the twenty years since the first edition of this book appeared, the ideas and techniques of nonlinear dynamics and chaos have found application to such exciting new fields as systems biology, evolutionary game theory, and sociophysics. This second edition includes new exercises on these cutting-edge developments, on topics as varied as the curiosities of visual perception and the tumultuous love dynamics in Gone With the Wind.

Introduction to Dynamics

DOWNLOAD NOW »

Author: I. C. Percival,D. Richards

Publisher: Cambridge University Press

ISBN: 9780521281492

Category: Mathematics

Page: 228

View: 5204

A new approach to dynamics that takes account of recent advances that have wide applications in the sciences and engineering. It introduces the subject at an undergraduate level by means of elementary qualitative theory of differential equations, the geometry of phase curves, and the theory of stability.

Dynamical Systems

DOWNLOAD NOW »

Author: Shlomo Sternberg

Publisher: Courier Corporation

ISBN: 0486135144

Category: Mathematics

Page: 272

View: 9194

A pioneer in the field of dynamical systems discusses one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials include PowerPoint slides and MATLAB exercises. 2010 edition.

Applications of Chaos and Nonlinear Dynamics in Engineering -

DOWNLOAD NOW »

Author: Santo Banerjee,Mala Mitra,Lamberto Rondoni

Publisher: Springer Science & Business Media

ISBN: 3642219225

Category: Technology & Engineering

Page: 350

View: 7990

Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This volume concentrates on reviewing the most relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. The book covers the theory as applied to robotics, electronic and communication engineering (for example chaos synchronization and cryptography) as well as to civil and mechanical engineering, where its use in damage monitoring and control is explored). Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications

Chaotic Dynamics

An Introduction

DOWNLOAD NOW »

Author: Gregory L. Baker,Jerry P. Gollub

Publisher: Cambridge University Press

ISBN: 9780521476850

Category: Mathematics

Page: 256

View: 8627

New edition of a very successful undergraduate text on chaos.