Topology for Computing

DOWNLOAD NOW »

Author: Afra J. Zomorodian

Publisher: Cambridge University Press

ISBN: 9781139442633

Category: Computers

Page: N.A

View: 2061

The emerging field of computational topology utilizes theory from topology and the power of computing to solve problems in diverse fields. Recent applications include computer graphics, computer-aided design (CAD), and structural biology, all of which involve understanding the intrinsic shape of some real or abstract space. A primary goal of this book is to present basic concepts from topology and Morse theory to enable a non-specialist to grasp and participate in current research in computational topology. The author gives a self-contained presentation of the mathematical concepts from a computer scientist's point of view, combining point set topology, algebraic topology, group theory, differential manifolds, and Morse theory. He also presents some recent advances in the area, including topological persistence and hierarchical Morse complexes. Throughout, the focus is on computational challenges and on presenting algorithms and data structures when appropriate.

Geometry and Topology for Mesh Generation

DOWNLOAD NOW »

Author: Herbert Edelsbrunner

Publisher: Cambridge University Press

ISBN: 9780521793094

Category: Mathematics

Page: 177

View: 1576

The book combines topics in mathematics (geometry and topology), computer science (algorithms), and engineering (mesh generation). The original motivation for these topics was the difficulty faced (both conceptually and in the technical execution) in any attempt to combine elements of combinatorial and of numerical algorithms. Mesh generation is a topic where a meaningful combination of these different approaches to problem solving is inevitable. The book develops methods from both areas that are amenable to combination, and explains recent breakthrough solutions to meshing that fit into this category.The book should be an ideal graduate text for courses on mesh generation. The specific material is selected giving preference to topics that are elementary, attractive, lend themselves to teaching, useful, and interesting.

Algebraic Geometry and Statistical Learning Theory

DOWNLOAD NOW »

Author: Sumio Watanabe

Publisher: Cambridge University Press

ISBN: 0521864674

Category: Computers

Page: 286

View: 7118

Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.

A Practical Guide to the Invariant Calculus

DOWNLOAD NOW »

Author: Elizabeth Louise Mansfield

Publisher: Cambridge University Press

ISBN: 1139487043

Category: Mathematics

Page: N.A

View: 3921

This book explains recent results in the theory of moving frames that concern the symbolic manipulation of invariants of Lie group actions. In particular, theorems concerning the calculation of generators of algebras of differential invariants, and the relations they satisfy, are discussed in detail. The author demonstrates how new ideas lead to significant progress in two main applications: the solution of invariant ordinary differential equations and the structure of Euler-Lagrange equations and conservation laws of variational problems. The expository language used here is primarily that of undergraduate calculus rather than differential geometry, making the topic more accessible to a student audience. More sophisticated ideas from differential topology and Lie theory are explained from scratch using illustrative examples and exercises. This book is ideal for graduate students and researchers working in differential equations, symbolic computation, applications of Lie groups and, to a lesser extent, differential geometry.

Level Set Methods

Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science

DOWNLOAD NOW »

Author: James Albert Sethian

Publisher: N.A

ISBN: 9780521572026

Category: Science

Page: 218

View: 5549

An introduction to level set methods, which will be be a useful resource for mathematicians, applied scientists, practising engineers and computer graphic artists.

Computational Homology

DOWNLOAD NOW »

Author: Tomasz Kaczynski,Konstantin Mischaikow,Marian Mrozek

Publisher: Springer Science & Business Media

ISBN: 0387215972

Category: Mathematics

Page: 482

View: 6288

Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.

Combinatorial Algebraic Topology

DOWNLOAD NOW »

Author: Dimitry Kozlov

Publisher: Springer Science & Business Media

ISBN: 3540719628

Category: Mathematics

Page: 390

View: 2356

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Topological Signal Processing

DOWNLOAD NOW »

Author: Michael Robinson

Publisher: Springer Science & Business Media

ISBN: 3642361048

Category: Technology & Engineering

Page: 208

View: 4626

Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information. Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known. This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations. Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.

Persistence Theory: From Quiver Representations to Data Analysis

DOWNLOAD NOW »

Author: Steve Y. Oudot

Publisher: American Mathematical Soc.

ISBN: 1470434431

Category:

Page: 218

View: 3015

Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.

Schwarz-Christoffel Mapping

DOWNLOAD NOW »

Author: Tobin A. Driscoll,Lloyd N. Trefethen

Publisher: Cambridge University Press

ISBN: 9781139433921

Category: Mathematics

Page: N.A

View: 3506

This book provides a comprehensive look at the Schwarz-Christoffel transformation, including its history and foundations, practical computation, common and less common variations, and many applications in fields such as electromagnetism, fluid flow, design and inverse problems, and the solution of linear systems of equations. It is an accessible resource for engineers, scientists, and applied mathematicians who seek more experience with theoretical or computational conformal mapping techniques. The most important theoretical results are stated and proved, but the emphasis throughout remains on concrete understanding and implementation, as evidenced by the 76 figures based on quantitatively correct illustrative examples. There are over 150 classical and modern reference works cited for readers needing more details. There is also a brief appendix illustrating the use of the Schwarz-Christoffel Toolbox for MATLAB, a package for computation of these maps.

Computational Topology

An Introduction

DOWNLOAD NOW »

Author: Herbert Edelsbrunner,John Harer

Publisher: American Mathematical Soc.

ISBN: 0821849255

Category: Mathematics

Page: 241

View: 757

Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.

Learning Theory

An Approximation Theory Viewpoint

DOWNLOAD NOW »

Author: Felipe Cucker,Ding Xuan Zhou

Publisher: Cambridge University Press

ISBN: 1139462865

Category: Computers

Page: N.A

View: 6886

The goal of learning theory is to approximate a function from sample values. To attain this goal learning theory draws on a variety of diverse subjects, specifically statistics, approximation theory, and algorithmics. Ideas from all these areas blended to form a subject whose many successful applications have triggered a rapid growth during the last two decades. This is the first book to give a general overview of the theoretical foundations of the subject emphasizing the approximation theory, while still giving a balanced overview. It is based on courses taught by the authors, and is reasonably self-contained so will appeal to a broad spectrum of researchers in learning theory and adjacent fields. It will also serve as an introduction for graduate students and others entering the field, who wish to see how the problems raised in learning theory relate to other disciplines.

Combinatorial Algebraic Topology

DOWNLOAD NOW »

Author: Dimitry Kozlov

Publisher: Springer Science & Business Media

ISBN: 354071961X

Category: Mathematics

Page: 390

View: 2279

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

High-Order Methods for Incompressible Fluid Flow

DOWNLOAD NOW »

Author: M. O. Deville,P. F. Fischer,E. H. Mund

Publisher: Cambridge University Press

ISBN: 9780521453097

Category: Mathematics

Page: 499

View: 7965

This book covers the development of high-order numerical methods for the simulation of incompressible fluid flows in complex domains.

Distributed Computing Through Combinatorial Topology

DOWNLOAD NOW »

Author: Maurice Herlihy,Dmitry Kozlov,Sergio Rajsbaum

Publisher: Newnes

ISBN: 0124047289

Category: Computers

Page: 336

View: 795

Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises

Spectral Methods for Time-Dependent Problems

DOWNLOAD NOW »

Author: Jan S. Hesthaven,Sigal Gottlieb,David Gottlieb

Publisher: Cambridge University Press

ISBN: 113945952X

Category: Mathematics

Page: N.A

View: 7656

Spectral methods are well-suited to solve problems modeled by time-dependent partial differential equations: they are fast, efficient and accurate and widely used by mathematicians and practitioners. This class-tested 2007 introduction, the first on the subject, is ideal for graduate courses, or self-study. The authors describe the basic theory of spectral methods, allowing the reader to understand the techniques through numerous examples as well as more rigorous developments. They provide a detailed treatment of methods based on Fourier expansions and orthogonal polynomials (including discussions of stability, boundary conditions, filtering, and the extension from the linear to the nonlinear situation). Computational solution techniques for integration in time are dealt with by Runge-Kutta type methods. Several chapters are devoted to material not previously covered in book form, including stability theory for polynomial methods, techniques for problems with discontinuous solutions, round-off errors and the formulation of spectral methods on general grids. These will be especially helpful for practitioners.

Level Set Methods and Fast Marching Methods

Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science

DOWNLOAD NOW »

Author: J. A. Sethian

Publisher: Cambridge University Press

ISBN: 9780521645577

Category: Computers

Page: 378

View: 8945

This new edition of Professor Sethian's successful text provides an introduction to level set methods and fast marching methods, which are powerful numerical techniques for analyzing and computing interface motion in a host of settings. They rely on a fundamental shift in how one views moving boundaries; rethinking the natural geometric Lagrangian perspective and exchanging it for an Eulerian, initial value partial differential equation perspective. For this edition, the collection of applications provided in the text has been expanded, including examples from physics, chemistry, fluid mechanics, combustion, image processing, material science, fabrication of microelectronic components, computer vision, computer-aided design, and optimal control theory. This book will be a useful resource for mathematicians, applied scientists, practising engineers, computer graphic artists, and anyone interested in the evolution of boundaries and interfaces.

Elementary Applied Topology

DOWNLOAD NOW »

Author: Robert Ghrist

Publisher: CreateSpace

ISBN: 9781502880857

Category: Mathematics

Page: 276

View: 8334

This book gives an introduction to the mathematics and applications comprising the new field of applied topology. The elements of this subject are surveyed in the context of applications drawn from the biological, economic, engineering, physical, and statistical sciences.

Differential Geometry and Statistics

DOWNLOAD NOW »

Author: M.K. Murray

Publisher: Routledge

ISBN: 1351455117

Category: Mathematics

Page: 288

View: 2576

Several years ago our statistical friends and relations introduced us to the work of Amari and Barndorff-Nielsen on applications of differential geometry to statistics. This book has arisen because we believe that there is a deep relationship between statistics and differential geometry and moreoever that this relationship uses parts of differential geometry, particularly its 'higher-order' aspects not readily accessible to a statistical audience from the existing literature. It is, in part, a long reply to the frequent requests we have had for references on differential geometry! While we have not gone beyond the path-breaking work of Amari and Barndorff- Nielsen in the realm of applications, our book gives some new explanations of their ideas from a first principles point of view as far as geometry is concerned. In particular it seeks to explain why geometry should enter into parametric statistics, and how the theory of asymptotic expansions involves a form of higher-order differential geometry. The first chapter of the book explores exponential families as flat geometries. Indeed the whole notion of using log-likelihoods amounts to exploiting a particular form of flat space known as an affine geometry, in which straight lines and planes make sense, but lengths and angles are absent. We use these geometric ideas to introduce the notion of the second fundamental form of a family whose vanishing characterises precisely the exponential families.

Computational Geometry

An Introduction

DOWNLOAD NOW »

Author: Franco P. Preparata,Michael I. Shamos

Publisher: Springer Science & Business Media

ISBN: 1461210984

Category: Mathematics

Page: 398

View: 9481

From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2