Theoretical Aerodynamics

DOWNLOAD NOW »

Author: L. M. Milne-Thomson

Publisher: Courier Corporation

ISBN: 0486151832

Category: Technology & Engineering

Page: 464

View: 5298

An excellent introduction to inviscid airflow using potential theory, this book is a classic in its field. Complete reprint of the revised 1966 edition, which brings the subject up to date.

Theoretical Aerodynamics

DOWNLOAD NOW »

Author: Ethirajan Rathakrishnan

Publisher: John Wiley & Sons

ISBN: 1118479378

Category: Technology & Engineering

Page: 560

View: 9927

Theoretical Aerodynamics is a user-friendly text for a full course on theoretical aerodynamics. The author systematically introduces aerofoil theory, its design features and performance aspects, beginning with the basics required, and then gradually proceeding to higher level. The mathematics involved is presented so that it can be followed comfortably, even by those who are not strong in mathematics. The examples are designed to fix the theory studied in an effective manner. Throughout the book, the physics behind the processes are clearly explained. Each chapter begins with an introduction and ends with a summary and exercises. This book is intended for graduate and advanced undergraduate students of Aerospace Engineering, as well as researchers and Designers working in the area of aerofoil and blade design. Provides a complete overview of the technical terms, vortex theory, lifting line theory, and numerical methods Presented in an easy-to-read style making full use of figures and illustrations to enhance understanding, and moves well simpler to more advanced topics Includes a complete section on fluid mechanics and thermodynamics, essential background topics to the theory of aerodynamics Blends the mathematical and physical concepts of design and performance aspects of lifting surfaces, and introduces the reader to the thin aerofoil theory, panel method, and finite aerofoil theory Includes a Solutions Manual for end-of-chapter exercises, and Lecture slides on the book's Companion Website

An Introduction to Theoretical and Computational Aerodynamics

DOWNLOAD NOW »

Author: Jack Moran

Publisher: Courier Corporation

ISBN: 0486317536

Category: Technology & Engineering

Page: 480

View: 8098

Concise text discusses properties of wings and airfoils in incompressible and primarily inviscid flow, viscid flows, panel methods, finite difference methods, and computation of transonic flows past thin airfoils. 1984 edition.

Introduction to Theoretical Aerodynamics and Hydrodynamics

DOWNLOAD NOW »

Author: William Rees Sears

Publisher: Amer Inst of Aeronautics &

ISBN: 9781600867736

Category: Science

Page: 203

View: 6804

Formally published for the first time, Professor William R. Sears classic work, "Introduction to Theoretical Aerodynamics and Hydrodynamics, "reflects many years of continual evolution as a course study guide at the Graduate School of Aeronautical Engineering at Cornell University, with updates prepared by his former students to enhance ease of use by todays students. Instructors will find this a superb textbook for a first course in ideal aerodynamics and/or hydrodynamics. Because Sears was a master of connecting mathematical concepts with physical fluid dynamic quantities, readers will find fundamental concepts directly connected to practical applications in the numerous step-by-step examples found throughout the book. SPECIAL FEATURES

Theoretical Aerodynamics

introduction to theoretical hydrodynamics

DOWNLOAD NOW »

Author: William Rees Sears

Publisher: N.A

ISBN: N.A

Category: Aerodynamics

Page: N.A

View: 3559

Theory of Lift

Introductory Computational Aerodynamics in MATLAB/Octave

DOWNLOAD NOW »

Author: G. D. McBain

Publisher: John Wiley & Sons

ISBN: 1118346289

Category: Technology & Engineering

Page: 288

View: 7396

Starting from a basic knowledge of mathematics and mechanics gained in standard foundation classes, Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave takes the reader conceptually through from the fundamental mechanics of lift to the stage of actually being able to make practical calculations and predictions of the coefficient of lift for realistic wing profile and planform geometries. The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that accurately predict and visualise the dynamics of real wing shapes, using lumped vortex, panel, and vortex lattice methods. This book contains all the mathematical development and formulae required in standard incompressible aerodynamics as well as dozens of small but complete working programs which can be put to use immediately using either the popular MATLAB or free Octave computional modelling packages. Key features: Synthesizes the classical foundations of aerodynamics with hands-on computation, emphasizing interactivity and visualization. Includes complete source code for all programs, all listings having been tested for compatibility with both MATLAB and Octave. Companion website (www.wiley.com/go/mcbain) hosting codes and solutions. Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave is an introductory text for graduate and senior undergraduate students on aeronautical and aerospace engineering courses and also forms a valuable reference for engineers and designers.

Theoretical and Computational Aerodynamics

DOWNLOAD NOW »

Author: Tapan K. Sengupta

Publisher: John Wiley & Sons

ISBN: 1118787579

Category: Technology & Engineering

Page: 516

View: 8752

Aerodynamics has seen many developments due to the growth of scientific computing, which has caused the design cycle time of aerospace vehicles to be heavily reduced. Today computational aerodynamics appears in the preliminary step of a new design, relegating costly, time-consuming wind tunnel testing to the final stages of design. Theoretical and Computational Aerodynamics is aimed to be a comprehensive textbook, covering classical aerodynamic theories and recent applications made possible by computational aerodynamics. It starts with a discussion on lift and drag from an overall dynamical approach, and after stating the governing Navier-Stokes equation, covers potential flows and panel method. Low aspect ratio and delta wings (including vortex breakdown) are also discussed in detail, and after introducing boundary layer theory, computational aerodynamics is covered for DNS and LES. Other topics covered are on flow transition to analyse NLF airfoils, bypass transition, streamwise and cross-flow instability over swept wings, viscous transonic flow over airfoils, low Reynolds number aerodynamics, high lift devices and flow control. Key features: Blends classical theories of incompressible aerodynamics to panel methods Covers lifting surface theories and low aspect ratio wing and wing-body aerodynamics Presents computational aerodynamics from first principles for incompressible and compressible flows Covers unsteady and low Reynolds number aerodynamics Includes an up-to-date account of DNS of airfoil aerodynamics including flow transition for NLF airfoils Contains chapter problems and illustrative examples Accompanied by a website hosting problems and a solution manual Theoretical and Computational Aerodynamics is an ideal textbook for undergraduate and graduate students, and is also aimed to be a useful resource book on aerodynamics for researchers and practitioners in the research labs and the industry.

Aerodynamics of Wings and Bodies

DOWNLOAD NOW »

Author: Holt Ashley,Marten Landahl

Publisher: Courier Corporation

ISBN: 0486648990

Category: Science

Page: 279

View: 6397

This excellent, innovative reference offers a wealth of useful information and a solid background in the fundamentals of aerodynamics. Fluid mechanics, constant density inviscid flow, singular perturbation problems, viscosity, thin-wing and slender body theories, drag minimalization, and other essentials are addressed in a lively, literate manner and accompanied by diagrams.

Theory of Flight

DOWNLOAD NOW »

Author: Richard von Mises

Publisher: Courier Corporation

ISBN: 0486132226

Category: Technology & Engineering

Page: 672

View: 2266

Mises' classic avoids the formidable mathematical structure of fluid dynamics, while conveying — by often unorthodox methods — a full understanding of the physical phenomena and mathematical concepts of aeronautical engineering.

Advanced UAV Aerodynamics, Flight Stability and Control

Novel Concepts, Theory and Applications

DOWNLOAD NOW »

Author: Pascual Marques,Andrea Da Ronch

Publisher: John Wiley & Sons

ISBN: 1118928687

Category: Technology & Engineering

Page: 776

View: 1624

Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.

Theoretical and Applied Aerodynamics

and Related Numerical Methods

DOWNLOAD NOW »

Author: Jean-Jacques Chattot,Mohamed Hafez

Publisher: Springer

ISBN: 9401798257

Category: Science

Page: 620

View: 2625

This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and hypersonic (rotational) flows. A unique feature of the book is its ten self-tests and their solutions as well as an appendix on special techniques of functions of complex variables, method of characteristics and conservation laws and shock waves. The book is the culmination of two courses taught every year by the two authors for the last two decades to seniors and first-year graduate students of aerospace engineering at UC Davis.

Understanding Aerodynamics

Arguing from the Real Physics

DOWNLOAD NOW »

Author: Doug McLean

Publisher: John Wiley & Sons

ISBN: 1118454227

Category: Technology & Engineering

Page: 576

View: 8930

Much-needed, fresh approach that brings a greater insight into the physical understanding of aerodynamics Based on the author’s decades of industrial experience with Boeing, this book helps students and practicing engineers to gain a greater physical understanding of aerodynamics. Relying on clear physical arguments and examples, Mclean provides a much-needed, fresh approach to this sometimes contentious subject without shying away from addressing "real" aerodynamic situations as opposed to the oversimplified ones frequently used for mathematical convenience. Motivated by the belief that engineering practice is enhanced in the long run by a robust understanding of the basics as well as real cause-and-effect relationships that lie behind the theory, he provides intuitive physical interpretations and explanations, debunking commonly-held misconceptions and misinterpretations, and building upon the contrasts provided by wrong explanations to strengthen understanding of the right ones. Provides a refreshing view of aerodynamics that is based on the author’s decades of industrial experience yet is always tied to basic fundamentals. Provides intuitive physical interpretations and explanations, debunking commonly-held misconceptions and misinterpretations Offers new insights to some familiar topics, for example, what the Biot-Savart law really means and why it causes so much confusion, what “Reynolds number” and “incompressible flow” really mean, and a real physical explanation for how an airfoil produces lift. Addresses "real" aerodynamic situations as opposed to the oversimplified ones frequently used for mathematical convenience, and omits mathematical details whenever the physical understanding can be conveyed without them.

Aerodynamics of a Lifting System in Extreme Ground Effect

DOWNLOAD NOW »

Author: Kirill V. Rozhdestvensky

Publisher: Springer Science & Business Media

ISBN: 3662042401

Category: Technology & Engineering

Page: 352

View: 2873

This book is dedicated to the memory of a distinguished Russian engineer, Rostislav E. Alexeyev, who was the first in the world to develop the largest ground effect machine - Ekranoplan. One of Alexeyev's design concepts with the aerodynamic configuration of a jlying wing can be seen on the front page. The book presents a description of a mathematical model of flow past a lifting system, performing steady and unsteady motions in close proximity to the underlying solid surface (ground). This case is interesting for practical purposes because both the aerodynamic and the economic efficiency of the system near the ground are most pronounced. Use of the method of matched asymptotic expansions enables closed form solutions for the aerodynamic characteristics of the wings-in-ground effect. These can be used for design, identification, and processing of experimental data in the course of developing ground effect vehicles. The term extreme ground effect, widely used through out the book, is associated with very small relative ground clearances of the order of 10% or less. The theory of a lifting surface, moving in immediate proximity to the ground, represents one of the few limiting cases that can be treated analytically. The author would like to acknowledge that this work has been influenced by the ideas of Professor Sheila E. Widnall, who was the first to apply the matched asymptotics techniques to treat lifting flows with the ground effect. Saint Petersburg, Russia February 2000 Kirill V. Rozhdestvensky Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Applied Hydro- and Aeromechanics

Based on Lectures of L. Prandtl

DOWNLOAD NOW »

Author: Oskar Karl Gustav Tietjens,Ludwig Prandtl

Publisher: Courier Corporation

ISBN: 048660375X

Category: Technology & Engineering

Page: 311

View: 8489

Prandtl was one of the great theorists of aerodynamics and this work has long been considered one of the finest introductory works in the field. Topics include flow through pipes, Prandtl's own work on boundary layers, drag, airfoil theory, and entry conditions for flow in a pipe.

Low-Speed Aerodynamics

DOWNLOAD NOW »

Author: Joseph Katz,Allen Plotkin

Publisher: Cambridge University Press

ISBN: 9780521665520

Category: Mathematics

Page: 613

View: 8868

Low-speed aerodynamics is important in the design and operation of aircraft flying at low Mach number, and ground and marine vehicles. This 2001 book offers a modern treatment of the subject, both the theory of inviscid, incompressible, and irrotational aerodynamics and the computational techniques now available to solve complex problems. A unique feature of the text is that the computational approach (from a single vortex element to a three-dimensional panel formulation) is interwoven throughout. Thus, the reader can learn about classical methods of the past, while also learning how to use numerical methods to solve real-world aerodynamic problems. This second edition has a new chapter on the laminar boundary layer (emphasis on the viscous-inviscid coupling), the latest versions of computational techniques, and additional coverage of interaction problems. It includes a systematic treatment of two-dimensional panel methods and a detailed presentation of computational techniques for three-dimensional and unsteady flows. With extensive illustrations and examples, this book will be useful for senior and beginning graduate-level courses, as well as a helpful reference tool for practising engineers.

Handbook of Compressible Aerodynamics

DOWNLOAD NOW »

Author: Jean Délery

Publisher: Wiley-ISTE

ISBN: 9781848211414

Category: Science

Page: 796

View: 3841

This book is dedicated to compressible aerodynamic flows in the context of the inviscid fluid hypothesis. Each chapter offers a simple theoretical presentation followed by an overview of practical calculation methods based on recent results, in order to make theoretical understanding easier and present current applications. Chapters 1 through 8 introduce the fundamental principles of theoretical aerodynamics and continue with vital reminders for understanding the discussions in the following chapters. Chapters 9 through 17 present the theory of steady unidimensional flows and breach surfaces such as shock waves and flow lines. This is central to gas dynamics. Chapters 18 through 24 develop the theory of characteristics applied to the study of supersonic flows as well as unsteady flows. The final chapter describes specific properties of transonic flows.

Aerodynamics, Aeronautics, and Flight Mechanics

DOWNLOAD NOW »

Author: Barnes W. MacCormick

Publisher: N.A

ISBN: 9780471110873

Category: Aerodynamics

Page: 652

View: 1335

Designed for introductory courses in aerodynamics, aeronautics and flight mechanics, this text examines the aerodynamics, propulsion, performance, stability and control of an aircraft. Major topics include lift, drag, compressible flow, design information, propellers, piston engines, turbojets, statics, dynamics, automatic stability and control. Two new chapters have been added to this edition on helicopters, V/STOL aircraft, and automatic control.

A History of Aerodynamics

And Its Impact on Flying Machines

DOWNLOAD NOW »

Author: John D. Anderson, Jr

Publisher: Cambridge University Press

ISBN: 1139935992

Category: Technology & Engineering

Page: N.A

View: 7718

From the Foreword: 'John Anderson's book represents a milestone in aviation literature. For the first time aviation enthusiasts - both specialists and popular readers alike - possess an authoritative history of aerodynamic theory. Not only is this study authoritative, it is also highly readable and linked to the actual (and more familiar) story of how the airplane evolved. The book touches on all the major theorists and their contributions and, most important, the historical context in which they worked to move the science of aerodynamics forward.' Von Hardesty, Smithsonian Institution From the reviews: 'Something of the unexpected quality of this book can be inferred from its full title A History of Aerodynamics and Its Impact on Flying Machines. Pilots tend to suppose that the science of aerodynamics began empirically, somewhere around the time of Lilienthal and the Wrights, and that aerodynamics and manned flight are roughly coeval. It is therefore surprising to come upon a photograph of the Wright Flyer as late as page 242 of the 478-page volume.' Peter Garrison, Flying 'This book successfully straddles the boundary that separates a text book from a history book. It is of equal interest to both the aerodynamicist and the layman. The textual balance achieved by the author has resulted in a book that is enjoyable and educational.' Earl See, American Aviation Historical Society Newsletter