The Real Numbers and Real Analysis

DOWNLOAD NOW »

Author: Ethan D. Bloch

Publisher: Springer Science & Business Media

ISBN: 0387721762

Category: Mathematics

Page: 554

View: 4904

This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.

The Real Numbers

An Introduction to Set Theory and Analysis

DOWNLOAD NOW »

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 331901577X

Category: Mathematics

Page: 244

View: 4253

While most texts on real analysis are content to assume the real numbers, or to treat them only briefly, this text makes a serious study of the real number system and the issues it brings to light. Analysis needs the real numbers to model the line, and to support the concepts of continuity and measure. But these seemingly simple requirements lead to deep issues of set theory—uncountability, the axiom of choice, and large cardinals. In fact, virtually all the concepts of infinite set theory are needed for a proper understanding of the real numbers, and hence of analysis itself. By focusing on the set-theoretic aspects of analysis, this text makes the best of two worlds: it combines a down-to-earth introduction to set theory with an exposition of the essence of analysis—the study of infinite processes on the real numbers. It is intended for senior undergraduates, but it will also be attractive to graduate students and professional mathematicians who, until now, have been content to "assume" the real numbers. Its prerequisites are calculus and basic mathematics. Mathematical history is woven into the text, explaining how the concepts of real number and infinity developed to meet the needs of analysis from ancient times to the late twentieth century. This rich presentation of history, along with a background of proofs, examples, exercises, and explanatory remarks, will help motivate the reader. The material covered includes classic topics from both set theory and real analysis courses, such as countable and uncountable sets, countable ordinals, the continuum problem, the Cantor–Schröder–Bernstein theorem, continuous functions, uniform convergence, Zorn's lemma, Borel sets, Baire functions, Lebesgue measure, and Riemann integrable functions.

Mathematik im mittelalterlichen Islam

DOWNLOAD NOW »

Author: J. L. Berggren

Publisher: Springer-Verlag

ISBN: 9783540766889

Category: Mathematics

Page: 200

View: 9327

Die Mathematik im mittelalterlichen Islam hatte großen Einfluss auf die allgemeine Entwicklung des Faches. Der Autor beschreibt diese Periode der Geschichte der Mathematik und bezieht sich dabei auf die arabischsprachigen Quellen. Zu den behandelten Themen gehören Dezimalrechnen, Geometrie, ebene und sphärische Trigonometrie, Algebra sowie die Approximation von Wurzeln von Gleichungen. Das Buch wendet sich an Mathematikhistoriker und -studenten, aber auch an alle Interessierten mit Mathematikkenntnissen der weiterführenden Schule.

A First Course in Real Analysis

DOWNLOAD NOW »

Author: Sterling K. Berberian

Publisher: Springer Science & Business Media

ISBN: 1441985484

Category: Mathematics

Page: 240

View: 3346

Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

DOWNLOAD NOW »

Author: Kai L. Chung

Publisher: Springer-Verlag

ISBN: 3642670334

Category: Mathematics

Page: 346

View: 3348

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

An Introduction to Real Analysis

The Commonwealth and International Library: Mathematical Topics

DOWNLOAD NOW »

Author: Derek G. Ball

Publisher: Elsevier

ISBN: 1483158969

Category: Mathematics

Page: 324

View: 6815

An Introduction to Real Analysis presents the concepts of real analysis and highlights the problems which necessitate the introduction of these concepts. Topics range from sets, relations, and functions to numbers, sequences, series, derivatives, and the Riemann integral. This volume begins with an introduction to some of the problems which are met in the use of numbers for measuring, and which provide motivation for the creation of real analysis. Attention then turns to real numbers that are built up from natural numbers, with emphasis on integers, rationals, and irrationals. The chapters that follow explore the conditions under which sequences have limits and derive the limits of many important sequences, along with functions of a real variable, Rolle's theorem and the nature of the derivative, and the theory of infinite series and how the concepts may be applied to decimal representation. The book also discusses some important functions and expansions before concluding with a chapter on the Riemann integral and the problem of area and its measurement. Throughout the text the stress has been upon concepts and interesting results rather than upon techniques. Each chapter contains exercises meant to facilitate understanding of the subject matter. This book is intended for students in colleges of education and others with similar needs.

Analysis 2

Differentialrechnung im Rn, gewöhnliche Differentialgleichungen

DOWNLOAD NOW »

Author: Otto Forster

Publisher: Springer-Verlag

ISBN: 3322919080

Category: Mathematics

Page: 164

View: 3969

Der vorliegende Band stellt den zweiten Teil eines Analysis-Kurses für Studierende der Mathematik und Physik dar. Das erste Kapitel über Differentialrechnung im R^n behandelt nach einer Einführung in die topologischen Grundbegriffe Kurven im R^n, partielle Ableitungen, totale Differenzierbarkeit, Taylorsche Formel, Maxima und Minima von Funktionen mehrerer Veränderlichen, implizite Funktionen und parameterabhängige Integrale. Das zweite Kapitel gibt eine kurze Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Nach dem Beweis des allgemeinen Existenz- und Eindeutigkeitssatzes und der Besprechung der Methode der Trennung der Variablen wird besonders auf die Theorie der linearen Differentialgleichungen eingegangen.

Elements of Real Analysis

DOWNLOAD NOW »

Author: David A. Sprecher

Publisher: Courier Corporation

ISBN: 0486153258

Category: Mathematics

Page: 368

View: 1703

Classic text explores intermediate steps between basics of calculus and ultimate stage of mathematics — abstraction and generalization. Covers fundamental concepts, real number system, point sets, functions of a real variable, Fourier series, more. Over 500 exercises.

Introduction to Real Analysis

DOWNLOAD NOW »

Author: Michael J. Schramm

Publisher: Courier Corporation

ISBN: 0486131920

Category: Mathematics

Page: 384

View: 935

This text forms a bridge between courses in calculus and real analysis. Suitable for advanced undergraduates and graduate students, it focuses on the construction of mathematical proofs. 1996 edition.

From Numbers to Analysis

DOWNLOAD NOW »

Author: Inder K. Rana

Publisher: World Scientific

ISBN: 9789810233044

Category: Mathematics

Page: 370

View: 8192

"This book is recommended to students and instructors looking for a very well-organized introduction to the foundations of analysis".Acta Sci. Math., 1999

Analysis II

Mit 437 Aufgaben

DOWNLOAD NOW »

Author: Martin Barner,Friedrich Flohr

Publisher: Walter de Gruyter

ISBN: 9783110150339

Category: Science

Page: 449

View: 6223

Problems in Real Analysis

Advanced Calculus on the Real Axis

DOWNLOAD NOW »

Author: Teodora-Liliana Radulescu,Vicentiu D. Radulescu,Titu Andreescu

Publisher: Springer Science & Business Media

ISBN: 0387773789

Category: Mathematics

Page: 452

View: 5753

Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.

A Course in Mathematical Analysis: Volume 1, Foundations and Elementary Real Analysis

DOWNLOAD NOW »

Author: D. J. H. Garling

Publisher: Cambridge University Press

ISBN: 1107311381

Category: Mathematics

Page: N.A

View: 9223

The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. This first volume focuses on the analysis of real-valued functions of a real variable. Besides developing the basic theory it describes many applications, including a chapter on Fourier series. It also includes a Prologue in which the author introduces the axioms of set theory and uses them to construct the real number system. Volume 2 goes on to consider metric and topological spaces and functions of several variables. Volume 3 covers complex analysis and the theory of measure and integration.

Principles of Real Analysis

DOWNLOAD NOW »

Author: S. C. Malik

Publisher: New Age International

ISBN: 8122422772

Category: Functions of real variables

Page: 388

View: 6779

Pi

Algorithmen, Computer, Arithmetik

DOWNLOAD NOW »

Author: Jörg Arndt,Christoph Haenel

Publisher: Springer-Verlag

ISBN: 366209360X

Category: Computers

Page: 264

View: 6754

Georg Cantor

DOWNLOAD NOW »

Author: Hans Joachim Ilgauds

Publisher: Springer-Verlag

ISBN: 3322822257

Category: Technology & Engineering

Page: 135

View: 8510

Real Analysis

A Constructive Approach

DOWNLOAD NOW »

Author: Mark Bridger

Publisher: John Wiley & Sons

ISBN: 1118031563

Category: Mathematics

Page: 320

View: 577

A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense—not just to math majors but also to students from all branches of the sciences. The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic. This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes: Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem Sequences, limits and series, and the careful derivation of formulas and estimates for important functions Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals Differentiation, emphasizing the derivative as a function rather than a pointwise limit Properties of sequences and series of continuous and differentiable functions Fourier series and an introduction to more advanced ideas in functional analysis Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging. This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.

Real Analysis

A Historical Approach

DOWNLOAD NOW »

Author: Saul Stahl

Publisher: John Wiley & Sons

ISBN: 1118096851

Category: Mathematics

Page: 316

View: 6269

A provocative look at the tools and history of realanalysis This new edition of Real Analysis: A Historical Approachcontinues to serve as an interesting read for students of analysis.Combining historical coverage with a superb introductory treatment,this book helps readers easily make the transition from concrete toabstract ideas. The book begins with an exciting sampling of classic and famousproblems first posed by some of the greatest mathematicians of alltime. Archimedes, Fermat, Newton, and Euler are each summoned inturn, illuminating the utility of infinite, power, andtrigonometric series in both pure and applied mathematics. Next,Dr. Stahl develops the basic tools of advanced calculus, whichintroduce the various aspects of the completeness of the realnumber system as well as sequential continuity anddifferentiability and lead to the Intermediate and Mean ValueTheorems. The Second Edition features: A chapter on the Riemann integral, including the subject ofuniform continuity Explicit coverage of the epsilon-delta convergence A discussion of the modern preference for the viewpoint ofsequences over that of series Throughout the book, numerous applications and examplesreinforce concepts and demonstrate the validity of historicalmethods and results, while appended excerpts from originalhistorical works shed light on the concerns of influentialmathematicians in addition to the difficulties encountered in theirwork. Each chapter concludes with exercises ranging in level ofcomplexity, and partial solutions are provided at the end of thebook. Real Analysis: A Historical Approach, Second Edition isan ideal book for courses on real analysis and mathematicalanalysis at the undergraduate level. The book is also a valuableresource for secondary mathematics teachers and mathematicians.

Funktionentheorie

DOWNLOAD NOW »

Author: Eberhard Freitag,Rolf Busam

Publisher: Springer-Verlag

ISBN: 3662073501

Category: Mathematics

Page: 477

View: 940

Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebraische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± V-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + V-121 + ~2 - V-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z.B. J 1 + V-3 + J 1 - V-3 = v6. Im Jahre 1777 führte L. EULER die Bezeichnung i = yCI für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.