The Geometry of Four-manifolds

DOWNLOAD NOW »

Author: S. K. Donaldson,P. B. Kronheimer

Publisher: Oxford University Press

ISBN: 9780198502692

Category: Fiction

Page: 440

View: 2779

This book provides the first lucid and accessible account to the modern study of the geometry of four-manifolds. It has become required reading for postgraduates and research workers whose research touches on this topic. Pre-requisites are a firm grounding in differential topology, and geometry as may be gained from the first year of a graduate course. The subject matter of this book is the most significant breakthrough in mathematics of the last fifty years, and Professor Donaldson won a Fields medal for his work in the area. The authors start from the standpoint that the fundamental group and intersection form of a four-manifold provides information about its homology and characteristic classes, but little of its differential topology. It turns out that the classification up to diffeomorphism of four-manifolds is very different from the classification of unimodular forms and that the study of this question leads naturally to the new Donaldson invariants of four-manifolds. A central theme of this book is that the appropriate geometrical tools for investigating these questions come from mathematical physics: the Yang-Mills theory and anti-self dual connections over four-manifolds. One of the many consquences of this theory is that 'exotic' smooth manifolds exist which are homeomorphic but not diffeomorphic to (4, and that large classes of forms cannot be realized as intersection forms whereas distinct manifolds may share the same form. These result have hadfar-reaching consequences in algebraic geometry, topology, and mathematical physics, and will continue to be a mainspring of mathematical research for years to come.

Gauge Theory and the Topology of Four-manifolds

DOWNLOAD NOW »

Author: Robert Friedman,John W. Morgan

Publisher: American Mathematical Soc.

ISBN: 0821805916

Category: Science

Page: 221

View: 5851

The lectures in this volume provide a perspective on how 4-manifold theory was studied before the discovery of modern-day Seiberg-Witten theory. One reason the progress using the Seiberg-Witten invariants was so spectacular was that those studying $SU(2)$-gauge theory had more than ten years' experience with the subject. The tools had been honed, the correct questions formulated, and the basic strategies well understood. The knowledge immediately bore fruit in the technically simpler environment of the Seiberg-Witten theory. Gauge theory long predates Donaldson's applications of the subject to 4-manifold topology, where the central concern was the geometry of the moduli space. One reason for the interest in this study is the connection between the gauge theory moduli spaces of a Kahler manifold and the algebro-geometric moduli space of stable holomorphic bundles over the manifold. The extra geometric richness of the $SU(2)$-moduli spaces may one day be important for purposes beyond the algebraic invariants that have been studied to date. It is for this reason that the results presented in this volume will be essential.

The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44)

DOWNLOAD NOW »

Author: John W. Morgan

Publisher: Princeton University Press

ISBN: 1400865166

Category: Mathematics

Page: 130

View: 870

The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level, the new invariants have proved to be more powerful and have led to a vast generalization of earlier results. This book is an introduction to the Seiberg-Witten invariants. The work begins with a review of the classical material on Spin c structures and their associated Dirac operators. Next comes a discussion of the Seiberg-Witten equations, which is set in the context of nonlinear elliptic operators on an appropriate infinite dimensional space of configurations. It is demonstrated that the space of solutions to these equations, called the Seiberg-Witten moduli space, is finite dimensional, and its dimension is then computed. In contrast to the SU(2)-case, the Seiberg-Witten moduli spaces are shown to be compact. The Seiberg-Witten invariant is then essentially the homology class in the space of configurations represented by the Seiberg-Witten moduli space. The last chapter gives a flavor for the applications of these new invariants by computing the invariants for most Kahler surfaces and then deriving some basic toological consequences for these surfaces.

Monopoles and Three-Manifolds

DOWNLOAD NOW »

Author: Peter Kronheimer,Tomasz Mrowka

Publisher: Cambridge University Press

ISBN: 1139468669

Category: Mathematics

Page: N.A

View: 6739

Originating with Andreas Floer in the 1980s, Floer homology has proved to be an effective tool in tackling many important problems in three- and four-dimensional geometry and topology. This 2007 book provides a comprehensive treatment of Floer homology, based on the Seiberg–Witten monopole equations. After first providing an overview of the results, the authors develop the analytic properties of the Seiberg–Witten equations, assuming only a basic grounding in differential geometry and analysis. The Floer groups of a general three-manifold are then defined and their properties studied in detail. Two final chapters are devoted to the calculation of Floer groups and to applications of the theory in topology. Suitable for beginning graduate students and researchers, this book provides a full discussion of a central part of the study of the topology of manifolds.

The Wild World of 4-manifolds

DOWNLOAD NOW »

Author: Alexandru Scorpan

Publisher: American Mathematical Soc.

ISBN: 0821837494

Category: Mathematics

Page: 609

View: 7352

What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. --MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. -- Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today. To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold--the intersection form--and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers. The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.

The Algebraic Characterization of Geometric 4-Manifolds

DOWNLOAD NOW »

Author: J. A. Hillman,Jonathan Arthur Hillman

Publisher: Cambridge University Press

ISBN: 9780521467780

Category: Mathematics

Page: 170

View: 944

This book describes work on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel-Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces.

Four-manifolds, geometries and knots

DOWNLOAD NOW »

Author: Jonathan Arthur Hillman,University of Warwick. Mathematics Institute

Publisher: N.A

ISBN: N.A

Category: Four-manifolds (Topology)

Page: 379

View: 5316

The Geometry of Walker Manifolds

DOWNLOAD NOW »

Author: Miguel Brozos-Vázquez

Publisher: Morgan & Claypool Publishers

ISBN: 1598298194

Category: Mathematics

Page: 159

View: 5494

Basic algebraic notions -- Introduction -- A historical perspective in the algebraic context -- Algebraic preliminaries -- Jordan normal form -- Indefinite geometry -- Algebraic curvature tensors -- Hermitian and para-Hermitian geometry -- The Jacobi and skew symmetric curvature operators -- Sectional, Ricci, scalar, and Weyl curvature -- Curvature decompositions -- Self-duality and anti-self-duality conditions -- Spectral geometry of the curvature operator -- Osserman and conformally Osserman models -- Osserman curvature models in signature (2, 2) -- Ivanov-Petrova curvature models -- Osserman Ivanov-Petrova curvature models -- Commuting curvature models -- Basic geometrical notions -- Introduction -- History -- Basic manifold theory -- The tangent bundle, lie bracket, and lie groups -- The cotangent bundle and symplectic geometry -- Connections, curvature, geodesics, and holonomy -- Pseudo-Riemannian geometry -- The Levi-Civita connection -- Associated natural operators -- Weyl scalar invariants -- Null distributions -- Pseudo-Riemannian holonomy -- Other geometric structures -- Pseudo-Hermitian and para-Hermitian structures -- Hyper-para-Hermitian structures -- Geometric realizations -- Homogeneous spaces, and curvature homogeneity -- Technical results in differential equations -- Walker structures -- Introduction -- Historical development -- Walker coordinates -- Examples of Walker manifolds -- Hypersurfaces with nilpotent shape operators -- Locally conformally flat metrics with nilpotent Ricci operator -- Degenerate pseudo-Riemannian homogeneous structures -- Para-Kaehler geometry -- Two-step nilpotent lie groups with degenerate center -- Conformally symmetric pseudo-Riemannian metrics -- Riemannian extensions -- The affine category -- Twisted Riemannian extensions defined by flat connections -- Modified Riemannian extensions defined by flat connections -- Nilpotent Walker manifolds -- Osserman Riemannian extensions -- Ivanov-Petrova Riemannian extensions -- Three-dimensional Lorentzian Walker manifolds -- Introduction -- History -- Three dimensional Walker geometry -- Adapted coordinates -- The Jordan normal form of the Ricci operator -- Christoffel symbols, curvature, and the Ricci tensor -- Locally symmetric Walker manifolds -- Einstein-like manifolds -- The spectral geometry of the curvature tensor -- Curvature commutativity properties -- Local geometry of Walker manifolds with -- Foliated Walker manifolds -- Contact Walker manifolds -- Strict Walker manifolds -- Three dimensional homogeneous Lorentzian manifolds -- Three dimensional lie groups and lie algebras -- Curvature homogeneous Lorentzian manifolds -- Diagonalizable Ricci operator -- Type II Ricci operator -- Four-dimensional Walker manifolds -- Introduction -- History -- Four-dimensional Walker manifolds -- Almost para-Hermitian geometry -- Isotropic almost para-Hermitian structures -- Characteristic classes -- Self-dual Walker manifolds -- The spectral geometry of the curvature tensor -- Introduction -- History -- Four-dimensional Osserman metrics -- Osserman metrics with diagonalizable Jacobi operator -- Osserman Walker type II metrics -- Osserman and Ivanov-Petrova metrics -- Riemannian extensions of affine surfaces -- Affine surfaces with skew symmetric Ricci tensor -- Affine surfaces with symmetric and degenerate Ricci tensor -- Riemannian extensions with commuting curvature operators -- Other examples with commuting curvature operators -- Hermitian geometry -- Introduction -- History -- Almost Hermitian geometry of Walker manifolds -- The proper almost Hermitian structure of a Walker manifold -- Proper almost hyper-para-Hermitian structures -- Hermitian Walker manifolds of dimension four -- Proper Hermitian Walker structures -- Locally conformally Kaehler structures -- Almost Kaehler Walker four-dimensional manifolds -- Special Walker manifolds -- Introduction -- History -- Curvature commuting conditions -- Curvature homogeneous strict Walker manifolds -- Bibliography.

Different Faces of Geometry

DOWNLOAD NOW »

Author: Simon Donaldson,Yakov Eliashberg,Misha Gromov

Publisher: Springer Science & Business Media

ISBN: 030648658X

Category: Mathematics

Page: 404

View: 5637

Different Faces of Geometry presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: -Amoebas and Tropical Geometry; -Convex Geometry and Asymptotic Geometric Analysis; -Differential Topology of 4-Manifolds; -3-Dimensional Contact Geometry; -Floer Homology and Low-Dimensional Topology; -Kdhler Geometry; -Lagrangian and Special Lagrangian Submanifolds; -Refined Seiberg-Witten Invariants. These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsvath (USA) and Z. Szabs (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany).

Selected Applications of Geometry to Low-dimensional Topology

DOWNLOAD NOW »

Author: Michael H. Freedman,Feng Luo

Publisher: American Mathematical Soc.

ISBN: 0821870009

Category: Mathematics

Page: 79

View: 7843

The inaugural volume in the popular AMS softcover series designed to make more widely available some of the outstanding lectures presented by various faculty in North America.

The Geometry of Supermanifolds

DOWNLOAD NOW »

Author: C. Bartocci,U. Bruzzo,Daniel Hernández-Ruipérez

Publisher: Springer Science & Business Media

ISBN: 9780792314400

Category: Mathematics

Page: 242

View: 932

'Et moi, ...• si favait III mmment en revenir, One service mathematics has rendered the je n'y serais point aile:' human race. It has put CXlUImon sense back Iules Verne where it belongs. on the topmost shelf next to the dUlty canister lahelled 'discarded non- The series i. divergent; therefore we may be able to do something with it. Eric T. Bell O. Hesvi.ide Mathematics is a tool for thOUght. A highly necessary tool in a world where both feedback and non­ linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com­ puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d't!tre of this series.

Topology and Geometry of Manifolds

2001 Georgia International Topology Conference, May 21-June 2, 2001, University of Georgia, Athens, Georgia

DOWNLOAD NOW »

Author: Ga.) Georgia International Topology Conference (2001 : Athens

Publisher: American Mathematical Soc.

ISBN: 0821835076

Category: Mathematics

Page: 357

View: 5448

Since 1961, the Georgia Topology Conference has been held every eight years to discuss the newest developments in topology. The goals of the conference are to disseminate new and important results and to encourage interaction among topologists who are in different stages of their careers. Invited speakers are encouraged to aim their talks to a broad audience, and several talks are organized to introduce graduate students to topics of current interest. Each conference results in high-quality surveys, new research, and lists of unsolved problems, some of which are then formally published. Continuing in this 40-year tradition, the AMS presents this volume of articles and problem lists from the 2001 conference. Topics covered in this title include symplectic and contact topology, foliations and laminations, and invariants of manifolds and knots.Articles of particular interest include John Etnyre's 'Introductory Lectures on Contact Geometry', which is a beautiful expository paper that explains the background and setting for many of the other papers. This is an excellent introduction to the subject for graduate students in neighboring fields. Etnyre and Lenhard Ng's 'Problems in Low-Dimensional Contact Topology' and Danny Calegari's extensive paper, 'Problems in Foliations and Laminations of 3-Manifolds', are carefully selected problems in keeping with the tradition of the conference. They were compiled by Etnyre and Ng and by Calegari with the input of many who were present. This book provides material of current interest to graduate students and research mathematicians interested in the geometry and topology of manifolds.

Instantons and Four-Manifolds

DOWNLOAD NOW »

Author: Daniel S. Freed,Karen K. Uhlenbeck

Publisher: Springer Science & Business Media

ISBN: 1461397030

Category: Mathematics

Page: 194

View: 7618

From the reviews of the first edition: "This book exposes the beautiful confluence of deep techniques and ideas from mathematical physics and the topological study of the differentiable structure of compact four-dimensional manifolds, compact spaces locally modeled on the world in which we live and operate... The book is filled with insightful remarks, proofs, and contributions that have never before appeared in print. For anyone attempting to understand the work of Donaldson and the applications of gauge theories to four-dimensional topology, the book is a must." #Science#1 "I would strongly advise the graduate student or working mathematician who wishes to learn the analytic aspects of this subject to begin with Freed and Uhlenbeck's book." #Bulletin of the American Mathematical Society#2

The Geometry of Dynamical Triangulations

DOWNLOAD NOW »

Author: Jan Ambjorn,Mauro Carfora,Department of Nuclear and Theoretical Physics Mauro Carfora,Annalisa Marzuoli

Publisher: Springer Science & Business Media

ISBN: 3540633308

Category: Computers

Page: 197

View: 4633

This book analyses in depth the geometrical aspects of the simplicial quantum gravity model known as the dynamical triangulations approach. The authors provide a compact and convenient account suitable both to introduce the non-expert reader to the spirit of the subject and to provide a well-chosen mathematical route to the heart of the matter for the expert. The techniques described in the book are novel and allow points of current interest in the subject of simplicial quantum gravity to be addressed. The authors discuss piecewise linear manifolds and give entropy estimates of the number of triangulations of 3- and 4-manifolds. Continuum physics is recovered through scaling limits and computer simulation is used to study simplicial quantum gravity extensively. The beginner will appreciate the introduction to the field and the expert the comprehensive account of recent results and developments.

Geometry and Topology of Manifolds

DOWNLOAD NOW »

Author: Hans U. Boden

Publisher: American Mathematical Soc.

ISBN: 0821837249

Category: Mathematics

Page: 347

View: 1113

This book contains expository papers that give an up-to-date account of recent developments and open problems in the geometry and topology of manifolds, along with several research articles that present new results appearing in published form for the first time. The unifying theme is the problem of understanding manifolds in low dimensions, notably in dimensions three and four, and the techniques include algebraic topology, surgery theory, Donaldson and Seiberg-Witten gauge theory, Heegaard Floer homology, contact and symplectic geometry, and Gromov-Witten invariants. The articles collected for this volume were contributed by participants of the Conference "Geometry and Topology of Manifolds" held at McMaster University on May 14-18, 2004 and are representative of the many excellent talks delivered at the conference.

Lectures on Hilbert Schemes of Points on Surfaces

DOWNLOAD NOW »

Author: Hiraku Nakajima

Publisher: American Mathematical Soc.

ISBN: 0821819569

Category: Mathematics

Page: 132

View: 4350

This beautifully written book deals with one shining example: the Hilbert schemes of points on algebraic surfaces ... The topics are carefully and tastefully chosen ... The young person will profit from reading this book. --Mathematical Reviews The Hilbert scheme of a surface $X$ describes collections of $n$ (not necessarily distinct) points on $X$. More precisely, it is the moduli space for 0-dimensional subschemes of $X$ of length $n$. Recently it was realized that Hilbert schemes originally studied in algebraic geometry are closely related to several branches of mathematics, such as singularities, symplectic geometry, representation theory--even theoretical physics. The discussion in the book reflects this feature of Hilbert schemes. One example of the modern, broader interest in the subject is a construction of the representation of the infinite-dimensional Heisenberg algebra, i.e., Fock space. This representation has been studied extensively in the literature in connection with affine Lie algebras, conformal field theory, etc. However, the construction presented in this volume is completely unique and provides an unexplored link between geometry and representation theory. The book offers an attractive survey of current developments in this rapidly growing subject. It is suitable as a text at the advanced graduate level.

Foundations of Differentiable Manifolds and Lie Groups

DOWNLOAD NOW »

Author: Frank W. Warner

Publisher: Springer Science & Business Media

ISBN: 9780387908946

Category: Mathematics

Page: 272

View: 5299

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.

Euclidean Quantum Gravity on Manifolds with Boundary

DOWNLOAD NOW »

Author: Maria Rosaria D'Esposito,A.Yu. Kamenshchik,G. Pollifrone

Publisher: Springer Science & Business Media

ISBN: 9780792344728

Category: Science

Page: 322

View: 4437

This book reflects our own struggle to understand the semiclassical behaviour of quantized fields in the presence of boundaries. Along many years, motivated by the problems of quantum cosmology and quantum field theory, we have studied in detail the one-loop properties of massless spin-l/2 fields, Euclidean Maxwell the ory, gravitino potentials and Euclidean quantum gravity. Hence our book begins with a review of the physical and mathematical motivations for studying physical theories in the presence of boundaries, with emphasis on electrostatics, vacuum v Maxwell theory and quantum cosmology. We then study the Feynman propagator in Minkowski space-time and in curved space-time. In the latter case, the corre sponding Schwinger-DeWitt asymptotic expansion is given. The following chapters are devoted to the standard theory of the effective action and the geometric im provement due to Vilkovisky, the manifestly covariant quantization of gauge fields, zeta-function regularization in mathematics and in quantum field theory, and the problem of boundary conditions in one-loop quantum theory. For this purpose, we study in detail Dirichlet, Neumann and Robin boundary conditions for scalar fields, local and non-local boundary conditions for massless spin-l/2 fields, mixed boundary conditions for gauge fields and gravitation. This is the content of Part I. Part II presents our investigations of Euclidean Maxwell theory, simple super gravity and Euclidean quantum gravity.