The Elements of Statistical Learning

Data Mining, Inference, and Prediction

DOWNLOAD NOW »

Author: Trevor Hastie,Robert Tibshirani,Jerome Friedman

Publisher: Springer Science & Business Media

ISBN: 0387216065

Category: Mathematics

Page: 536

View: 4365

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

The Elements of Statistical Learning

Data Mining, Inference, and Prediction, Second Edition

DOWNLOAD NOW »

Author: Trevor Hastie,Robert Tibshirani,Jerome Friedman

Publisher: Springer Science & Business Media

ISBN: 9780387848587

Category: Computers

Page: 745

View: 8542

This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates.

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

DOWNLOAD NOW »

Author: Trevor Hastie,Robert Tibshirani,Jerome H. Friedman

Publisher: Springer Science & Business Media

ISBN: 9780387952840

Category: Mathematics

Page: 533

View: 891

This book describes the important ideas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry.

An Introduction to Statistical Learning

with Applications in R

DOWNLOAD NOW »

Author: Gareth James,Daniela Witten,Trevor Hastie,Robert Tibshirani

Publisher: Springer Science & Business Media

ISBN: 1461471389

Category: Mathematics

Page: 426

View: 5918

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

DOWNLOAD NOW »

Author: Trevor Hastie,Robert Tibshirani,Jerome H. Friedman

Publisher: N.A

ISBN: 9780387848846

Category: Biology

Page: 745

View: 547

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

DOWNLOAD NOW »

Author: Trevor Hastie,Robert Tibshirani,Jerome Friedman

Publisher: Springer Science & Business Media

ISBN: 0387216065

Category: Mathematics

Page: 536

View: 5346

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Statistics for High-Dimensional Data

Methods, Theory and Applications

DOWNLOAD NOW »

Author: Peter Bühlmann,Sara van de Geer

Publisher: Springer Science & Business Media

ISBN: 364220192X

Category: Mathematics

Page: 558

View: 6216

Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Spectral Analysis of Large Dimensional Random Matrices

DOWNLOAD NOW »

Author: Zhidong Bai,Jack W. Silverstein

Publisher: Springer Science & Business Media

ISBN: 1441906614

Category: Mathematics

Page: 552

View: 6994

The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users. This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory.

Principles and Theory for Data Mining and Machine Learning

DOWNLOAD NOW »

Author: Bertrand Clarke,Ernest Fokoue,Hao Helen Zhang

Publisher: Springer Science & Business Media

ISBN: 0387981357

Category: Computers

Page: 786

View: 5299

Extensive treatment of the most up-to-date topics Provides the theory and concepts behind popular and emerging methods Range of topics drawn from Statistics, Computer Science, and Electrical Engineering

The Nature of Statistical Learning Theory

DOWNLOAD NOW »

Author: Vladimir N. Vapnik

Publisher: Springer Science & Business Media

ISBN: 1475724403

Category: Mathematics

Page: 188

View: 5944

The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning from the general point of view of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: - the general setting of learning problems and the general model of minimizing the risk functional from empirical data - a comprehensive analysis of the empirical risk minimization principle and shows how this allows for the construction of necessary and sufficient conditions for consistency - non-asymptotic bounds for the risk achieved using the empirical risk minimization principle - principles for controlling the generalization ability of learning machines using small sample sizes - introducing a new type of universal learning machine that controls the generalization ability.

All of Nonparametric Statistics

DOWNLOAD NOW »

Author: Larry Wasserman

Publisher: Springer Science & Business Media

ISBN: 9780387306230

Category: Mathematics

Page: 270

View: 8075

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.

Statistical Analysis of Network Data

Methods and Models

DOWNLOAD NOW »

Author: Eric D. Kolaczyk

Publisher: Springer Science & Business Media

ISBN: 0387881468

Category: Computers

Page: 386

View: 8925

In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.

Computer Age Statistical Inference

Algorithms, Evidence, and Data Science

DOWNLOAD NOW »

Author: Bradley Efron,Trevor Hastie

Publisher: Cambridge University Press

ISBN: 1108107958

Category: Mathematics

Page: N.A

View: 4167

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

All of Statistics

A Concise Course in Statistical Inference

DOWNLOAD NOW »

Author: Larry Wasserman

Publisher: Springer Science & Business Media

ISBN: 0387217363

Category: Mathematics

Page: 442

View: 8941

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Recursive Partitioning and Applications

DOWNLOAD NOW »

Author: Heping Zhang,Burton H. Singer

Publisher: Springer Science & Business Media

ISBN: 9781441968241

Category: Mathematics

Page: 262

View: 2354

Multiple complex pathways, characterized by interrelated events and c- ditions, represent routes to many illnesses, diseases, and ultimately death. Although there are substantial data and plausibility arguments suppo- ing many conditions as contributory components of pathways to illness and disease end points, we have, historically, lacked an e?ective method- ogy for identifying the structure of the full pathways. Regression methods, with strong linearity assumptions and data-basedconstraints onthe extent and order of interaction terms, have traditionally been the strategies of choice for relating outcomes to potentially complex explanatory pathways. However, nonlinear relationships among candidate explanatory variables are a generic feature that must be dealt with in any characterization of how health outcomes come about. It is noteworthy that similar challenges arise from data analyses in Economics, Finance, Engineering, etc. Thus, the purpose of this book is to demonstrate the e?ectiveness of a relatively recently developed methodology—recursive partitioning—as a response to this challenge. We also compare and contrast what is learned via rec- sive partitioning with results obtained on the same data sets using more traditional methods. This serves to highlight exactly where—and for what kinds of questions—recursive partitioning–based strategies have a decisive advantage over classical regression techniques.

Statistical Learning with Sparsity

The Lasso and Generalizations

DOWNLOAD NOW »

Author: Trevor Hastie,Robert Tibshirani,Martin Wainwright

Publisher: CRC Press

ISBN: 1498712177

Category: Business & Economics

Page: 367

View: 1610

Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of l1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.

Plane Answers to Complex Questions

The Theory of Linear Models

DOWNLOAD NOW »

Author: Ronald Christensen

Publisher: Springer Science & Business Media

ISBN: 1475724772

Category: Mathematics

Page: 453

View: 1652

The second edition of Plane Answers has many additions and a couple of deletions. New material includes additional illustrative examples in Ap pendices A and B and Chapters 2 and 3, as well as discussions of Bayesian estimation, near replicate lack of fit tests, testing the independence assump tion, testing variance components, the interblock analysis for balanced in complete block designs, nonestimable constraints, analysis of unreplicated experiments using normal plots, tensors, and properties of Kronecker prod ucts and Vee operators. The book contains an improved discussion of the relation between ANOVA and regression, and an improved presentation of general Gauss-Markov models. The primary material that has been deleted are the discussions of weighted means and of log-linear models. The mate rial on log-linear models was included in Christensen (1990b), so it became redundant here. Generally, I have tried to clean up the presentation of ideas wherever it seemed obscure to me. Much of the work on the second edition was done while on sabbatical at the University of Canterbury in Christchurch, New Zealand. I would par ticularly like to thank John Deely for arranging my sabbatical. Through their comments and criticisms, four people were particularly helpful in con structing this new edition. I would like to thank Wes Johnson, Snehalata Huzurbazar, Ron Butler, and Vance Berger.

Statistical Learning from a Regression Perspective

DOWNLOAD NOW »

Author: Richard A. Berk

Publisher: Springer

ISBN: 3319440489

Category: Mathematics

Page: 347

View: 638

This textbook considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. This fully revised new edition includes important developments over the past 8 years. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis derives from sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. As in the first edition, a unifying theme is supervised learning that can be treated as a form of regression analysis. Key concepts and procedures are illustrated with real applications, especially those with practical implications. The material is written for upper undergraduate level and graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. The author uses this book in a course on modern regression for the social, behavioral, and biological sciences. All of the analyses included are done in R with code routinely provided.

Pattern Recognition and Machine Learning

DOWNLOAD NOW »

Author: Christopher M. Bishop

Publisher: Springer

ISBN: 9781493938438

Category: Computers

Page: 738

View: 2398

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Machine Learning

A Probabilistic Perspective

DOWNLOAD NOW »

Author: Kevin P. Murphy

Publisher: MIT Press

ISBN: 0262018020

Category: Computers

Page: 1067

View: 8842

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.