Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn

DOWNLOAD NOW »

Author: Jake VanderPlas

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958456979

Category: Computers

Page: 552

View: 727

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

The Data Science Handbook

DOWNLOAD NOW »

Author: Field Cady

Publisher: John Wiley & Sons

ISBN: 1119092922

Category: Mathematics

Page: 416

View: 852

A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.

Python Data Science Handbook

Essential Tools for Working with Data

DOWNLOAD NOW »

Author: Jake VanderPlas

Publisher: "O'Reilly Media, Inc."

ISBN: 1491912146

Category: Computers

Page: 548

View: 3069

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Einführung in Data Science

Grundprinzipien der Datenanalyse mit Python

DOWNLOAD NOW »

Author: Joel Grus

Publisher: O'Reilly

ISBN: 3960100256

Category: Computers

Page: 352

View: 5148

Dieses Buch führt Sie in Data Science ein, indem es grundlegende Prinzipien der Datenanalyse erläutert und Ihnen geeignete Techniken und Werkzeuge vorstellt. Sie lernen nicht nur, wie Sie Bibliotheken, Frameworks, Module und Toolkits konkret einsetzen, sondern implementieren sie auch selbst. Dadurch entwickeln Sie ein tieferes Verständnis für die Zusammenhänge und erfahren, wie essenzielle Tools und Algorithmen der Datenanalyse im Kern funktionieren. Falls Sie Programmierkenntnisse und eine gewisse Sympathie für Mathematik mitbringen, unterstützt Joel Grus Sie dabei, mit den mathematischen und statistischen Grundlagen der Data Science vertraut zu werden und sich Programmierfähigkeiten anzueignen, die Sie für die Praxis benötigen. Dabei verwendet er Python: Die weitverbreitete Sprache ist leicht zu erlernen und bringt zahlreiche Bibliotheken für Data Science mit. Aus dem Inhalt: - Absolvieren Sie einen Crashkurs in Python - Lernen Sie die Grundlagen von linearer Algebra, Statistik und Wahrscheinlichkeitsrechnung kennen und erfahren Sie, wie diese in Data Science eingesetzt werden - Sammeln, untersuchen, bereinigen, bearbeiten und manipulieren Sie Daten - Tauchen Sie in die Welt des maschinellen Lernens ein - Implementieren Sie Modelle wie k-nearest Neighbors, Naive Bayes, lineare und logistische Regression, Entscheidungsbäume, neuronale Netzwerke und Clustering - Entdecken Sie Empfehlungssysteme, Sprachverarbeitung, Netzwerkanalyse, MapReduce und Datenbanken

Python Data Science Handbook, Jake VanderPlas, 2017

Data Science

DOWNLOAD NOW »

Author: O'Reilly Media, Inc

Publisher: Bukupedia

ISBN: 1491912057

Category: Computers

Page: 548

View: 528

This is a book about doing data science with Python, which immediately begs the question: what is data science? It’s a surprisingly hard definition to nail down, especially given how ubiquitous the term has become. Vocal critics have variously dismissed the term as a superfluous label (after all, what science doesn’t involve data?) or a simple buzzword that only exists to salt résumés and catch the eye of overzealous tech recruiters. In my mind, these critiques miss something important. Data science, despite its hypeladen veneer, is perhaps the best label we have for the cross-disciplinary set of skills that are becoming increasingly important in many applications across industry and academia. This cross-disciplinary piece is key: in my mind, the best existing definition of data science is illustrated by Drew Conway’s Data Science Venn Diagram, first published on his blog in September 2010 While some of the intersection labels are a bit tongue-in-cheek, this diagram captures the essence of what I think people mean when they say “data science”: it is fundamentally an interdisciplinary subject. Data science comprises three distinct and overlapping areas: the skills of a statistician who knows how to model and summarize datasets (which are growing ever larger); the skills of a computer scientist who can design and use algorithms to efficiently store, process, and visualize this data; and the domain expertise—what we might think of as “classical” training in a subject—necessary both to formulate the right questions and to put their answers in context. With this in mind, I would encourage you to think of data science not as a new domain of knowledge to learn, but as a new set of skills that you can apply within your current area of expertise. Whether you are reporting election results, forecasting stock returns, optimizing online ad clicks, identifying microorganisms in microscope photos, seeking new classes of astronomical objects, or working with data in any other field, the goal of this book is to give you the ability to ask and answer new questions about your chosen subject area. Who Is This Book For? In my teaching both at the University of Washington and at various tech-focused conferences and meetups, one of the most common questions I have heard is this: “how should I learn Python?” The people asking are generally technically minded students, developers, or researchers, often with an already strong background in writing code and using computational and numerical tools. Most of these folks don’t want to learn Python per se, but want to learn the language with the aim of using it as a tool for data-intensive and computational science. While a large patchwork of videos, blog posts, and tutorials for this audience is available online, I’ve long been frustrated by the lack of a single good answer to this question; that is what inspired this book. The book is not meant to be an introduction to Python or to programming in general; I assume the reader has familiarity with the Python language, including defining functions, assigning variables, calling methods of objects, controlling the flow of a program, and other basic tasks. Instead, it is meant to help Python users learn to use Python’s data science stack—libraries such as IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and related tools—to effectively store, manipulate, and gain insight from data. Why Python? Python has emerged over the last couple decades as a first-class tool for scientific computing tasks, including the analysis and visualization of large datasets. This may have come as a surprise to early proponents of the Python language: the language itself was not specifically designed with data analysis or scientific computing in mind. The usefulness of Python for data science stems primarily from the large and active ecosystem of third-party packages: NumPy for manipulation of homogeneous arraybased data, Pandas for manipulation of heterogeneous and labeled data, SciPy for common scientific computing tasks, Matplotlib for publication-quality visualizations, IPython for interactive execution and sharing of code, Scikit-Learn for machine learning, and many more tools that will be mentioned in the following pages. If you are looking for a guide to the Python language itself, I would suggest the sister project to this book, A Whirlwind Tour of the Python Language. This short report provides a tour of the essential features of the Python language, aimed at data scientists who already are familiar with one or more other programming languages. Python 2 Versus Python 3 This book uses the syntax of Python 3, which contains language enhancements that are not compatible with the 2.x series of Python. Though Python 3.0 was first released in 2008, adoption has been relatively slow, particularly in the scientific and web development communities. This is primarily because it took some time for many of the essential third-party packages and toolkits to be made compatible with the new language internals. Since early 2014, however, stable releases of the most important tools in the data science ecosystem have been fully compatible with both Python 2 and 3, and so this book will use the newer Python 3 syntax. However, the vast majority of code snippets in this book will also work without modification in Python 2: in cases where a Py2-incompatible syntax is used, I will make every effort to note it explicitly. Outline of This Book Each chapter of this book focuses on a particular package or tool that contributes a fundamental piece of the Python data science story. IPython and Jupyter (Chapter 1) These packages provide the computational environment in which many Pythonusing data scientists work. NumPy (Chapter 2) This library provides the ndarray object for efficient storage and manipulation of dense data arrays in Python. Pandas (Chapter 3) This library provides the DataFrame object for efficient storage and manipulation of labeled/columnar data in Python. Matplotlib (Chapter 4) This library provides capabilities for a flexible range of data visualizations in Python.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

DOWNLOAD NOW »

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 641

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

The Data Science Handbook

Advice and Insights from 25 Amazing Data Scientists

DOWNLOAD NOW »

Author: Carl Shan,Henry Wang,William Chen,Max Song

Publisher: N.A

ISBN: 9780692434871

Category:

Page: N.A

View: 8711

The Data Science Handbook is a curated collection of 25 candid, honest and insightful interviews conducted with some of the world's top data scientists.In this book, you'll hear how the co-creator of the term 'data scientist' thinks about career and personal success. You'll hear from a young woman who created her own data scientist curriculum, subsequently landing her a role in the field. Readers of this book will be left with war stories, wisdom and

Statistik-Workshop für Programmierer

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 3620

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Data Science für Dummies

DOWNLOAD NOW »

Author: Lillian Pierson

Publisher: John Wiley & Sons

ISBN: 352780675X

Category: Mathematics

Page: 382

View: 7664

Daten, Daten, Daten? Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensätze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafür notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So können Sie die Erkenntnisse dieses Buches auf Ihre Daten übertragen und aus deren Analyse unmittelbare Schlüsse und Konsequenzen ziehen.

Python Data Science Handbook

Essential Tools for Working with Data

DOWNLOAD NOW »

Author: Jacob T. Vanderplas,Jake VanderPlas

Publisher: O'Reilly Media

ISBN: 9781491912058

Category: Computers

Page: 529

View: 1064

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all--IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Das Handbuch für Startups

DOWNLOAD NOW »

Author: Bob Dorf,Steve Blank,Nils Högsdal,Daniel Bartel

Publisher: O'Reilly Germany

ISBN: 3955618137

Category: Business & Economics

Page: 512

View: 4244

Ein Startup ist nicht die Miniaturausgabe eines etablierten Unternehmens, sondern eine temporäre, flexible Organisation auf der Suche nach einem nachhaltigen Geschäftsmodell: Das ist die zentrale Erkenntnis, die dem "Handbuch für Startups" zugrundeliegt. Es verbindet den Lean-Ansatz, Prinzipien des Customer Development sowie Konzepte wie Design Thinking und (Rapid) Prototyping zu einem umfassenden Vorgehensmodell, mit dem sich aus Ideen und Innovationen tragfähige Geschäftsmodelle entwickeln lassen. Lean Startup & Customer Development: Der Lean-Ansatz für Startups basiert, im Unterschied zum klassischen Vorgehen, nicht auf einem starren Businessplan, der drei Jahre lang unverändert umzusetzen ist, sondern auf einem beweglichen Modell, das immer wieder angepasst wird. Sämtliche Bestandteile der Planung – von den Produkteigenschaften über die Zielgruppen bis hin zum Vertriebsmodell – werden als Hypothesen gesehen, die zu validieren bzw. zu falsifizieren sind. Erst nachdem sie im Austausch mit den potenziellen Kunden bestätigt wurden und nachhaltige Verkäufe möglich sind, verlässt das Startup seine Suchphase und widmet sich der Umsetzung und Skalierung seines Geschäftsmodells. Der große Vorteil: Fehlannahmen werden erheblich früher erkannt – nämlich zu einem Zeitpunkt, an dem man noch die Gelegenheit hat, Änderungen vorzunehmen. Damit erhöhen sich die Erfolgsaussichten beträchtlich. Für den Praxiseinsatz: Sämtliche Schritte werden in diesem Buch detailliert beschrieben und können anhand der zahlreichen Checklisten nachvollzogen werden. Damit ist das Handbuch ein wertvoller Begleiter und ein umfassendes Nachschlagewerk für Gründerinnen & Gründer. Von deutschen Experten begleitet: Die deutsche Ausgabe des international erfolgreichen Handbuchs entstand mit fachlicher Unterstützung von Prof. Dr. Nils Högsdal und Entrepreneur Daniel Bartel, die auch ein deutsches Vorwort sowie sieben Fallstudien aus dem deutschsprachigen Raum beisteuern.

Einführung in Machine Learning mit Python

Praxiswissen Data Science

DOWNLOAD NOW »

Author: Andreas C. Müller,Sarah Guido

Publisher: O'Reilly

ISBN: 3960101120

Category: Computers

Page: 378

View: 3529

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

DOWNLOAD NOW »

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 4964

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

R für Data Science

Daten importieren, bereinigen, umformen, modellieren und visualisieren

DOWNLOAD NOW »

Author: Hadley Wickham,Garrett Grolemund

Publisher: O'Reilly

ISBN: 3960101546

Category: Computers

Page: 502

View: 8529

Lernen Sie, wie Sie mit R Ihre Rohdaten in Erkenntnisse und Wissen umwandeln. Dieses Buch führt Sie ein in R, RStudio und tidyverse – eine Sammlung von R-Paketen, die ineinandergreifen, um Data Science schnell, flüssig und komfortabel zu machen. R für Data Science ist geeignet für Leser ohne vorherige Programmierkenntnisse und zielt darauf ab, dass Sie Techniken der Data Science so schnell wie möglich in der Praxis umsetzen können. Die Autoren Hadley Wickham und Garrett Grolemund zeigen, wie Sie Daten importieren, aufbereiten, untersuchen und modellieren und wie Sie die Ergebnisse kommunizieren können. So bekommen Sie einen vollständigen Überblick über den Data-Science-Zyklus und die Tools, die für die Detailarbeit erforderlich sind.

Big Data

Die Revolution, die unser Leben verändern wird

DOWNLOAD NOW »

Author: Viktor Mayer-Schönberger,Viktor; Cukier Mayer-Schönberger

Publisher: Redline Wirtschaft

ISBN: 3864144590

Category: Political Science

Page: 288

View: 5406

Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.

Programmieren lernen mit Python

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868999477

Category: Computers

Page: 312

View: 6469

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Jenseits reiner Theorie: Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen: Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält. Starten Sie durch: Beginnen Sie mit den Grundlagen der Programmierung und den verschiedenen Programmierkonzepten, und lernen Sie, wie ein Informatiker zu programmieren.

Die Berechnung der Zukunft

Warum die meisten Prognosen falsch sind und manche trotzdem zutreffen - Der New York Times Bestseller

DOWNLOAD NOW »

Author: Nate Silver

Publisher: Heyne Verlag

ISBN: 3641112702

Category: Business & Economics

Page: 656

View: 2711

Zuverlässige Vorhersagen sind doch möglich! Nate Silver ist der heimliche Gewinner der amerikanischen Präsidentschaftswahlen 2012: ein begnadeter Statistiker, als »Prognose-Popstar« und »Wundernerd« weltberühmt geworden. Er hat die Wahlergebnisse aller 50 amerikanischen Bundesstaaten absolut exakt vorausgesagt – doch damit nicht genug: Jetzt zeigt Nate Silver, wie seine Prognosen in Zukunft Terroranschläge, Umweltkatastrophen und Finanzkrisen verhindern sollen. Gelingt ihm die Abschaffung des Zufalls? Warum werden Wettervorhersagen immer besser, während die Terrorattacken vom 11.09.2001 niemand kommen sah? Warum erkennen Ökonomen eine globale Finanzkrise nicht einmal dann, wenn diese bereits begonnen hat? Das Problem ist nicht der Mangel an Informationen, sondern dass wir die verfügbaren Daten nicht richtig deuten. Zuverlässige Prognosen aber würden uns helfen, Zufälle und Ungewissheiten abzuwehren und unser Schicksal selbst zu bestimmen. Nate Silver zeigt, dass und wie das geht. Erstmals wendet er seine Wahrscheinlichkeitsrechnung nicht nur auf Wahlprognosen an, sondern auf die großen Probleme unserer Zeit: die Finanzmärkte, Ratingagenturen, Epidemien, Erdbeben, den Klimawandel, den Terrorismus. In all diesen Fällen gibt es zahlreiche Prognosen von Experten, die er überprüft – und erklärt, warum sie meist falsch sind. Gleichzeitig schildert er, wie es gelingen kann, im Rauschen der Daten die wesentlichen Informationen herauszufiltern. Ein unterhaltsamer und spannender Augenöffner!

Visualize This!

DOWNLOAD NOW »

Author: Nathan Yau

Publisher: John Wiley & Sons

ISBN: 3527760229

Category: Statistics / Graphic methods / Data processing

Page: 422

View: 1292

A guide on how to visualise and tell stories with data, providing practical design tips complemented with step-by-step tutorials.

Inside Big Data

Unsere Daten zeigen, wer wir wirklich sind

DOWNLOAD NOW »

Author: Christian Rudder

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 3446444602

Category: Political Science

Page: 304

View: 7038

In seinem New-York-Times-Bestseller zeigt Christian Rudder erstmals, wie wir von Big Data profitieren können: indem wir menschlichen Überzeugungen und Vorlieben durch die Analyse großer Datenmengen auf die Spur kommen. Der Gründer der Dating-Seite "OkCupid" hat seine anonymisierten Daten danach befragt, was wir mögen, was wir ablehnen, was wir uns insgeheim wünschen, ob unsere politischen Ansichten unsere Partnerbeziehung verändern – und wie rassistisch wir wirklich sind. "Inside Big Data" bedeutet einen Paradigmenwechsel zu einer konstruktiven Datenauswertung, unabhängig von Konzernen wie Google, und verrät uns Erstaunliches darüber, wer wir wirklich sind.