Stochastic Processes

Theory for Applications

DOWNLOAD NOW »

Author: Robert G. Gallager

Publisher: Cambridge University Press

ISBN: 1107435315

Category: Technology & Engineering

Page: 568

View: 8942

This definitive textbook provides a solid introduction to discrete and continuous stochastic processes, tackling a complex field in a way that instils a deep understanding of the relevant mathematical principles, and develops an intuitive grasp of the way these principles can be applied to modelling real-world systems. It includes a careful review of elementary probability and detailed coverage of Poisson, Gaussian and Markov processes with richly varied queuing applications. The theory and applications of inference, hypothesis testing, estimation, random walks, large deviations, martingales and investments are developed. Written by one of the world's leading information theorists, evolving over twenty years of graduate classroom teaching and enriched by over 300 exercises, this is an exceptional resource for anyone looking to develop their understanding of stochastic processes.

Stochastic Processes

Theory for Applications

DOWNLOAD NOW »

Author: Robert G. Gallager

Publisher: Cambridge University Press

ISBN: 1107039754

Category: Business & Economics

Page: 553

View: 1598

The definitive textbook on stochastic processes, written by one of the world's leading information theorists, covering both theory and applications.

Discrete Stochastic Processes

DOWNLOAD NOW »

Author: Robert G. Gallager

Publisher: Springer Science & Business Media

ISBN: 146152329X

Category: Technology & Engineering

Page: 271

View: 7849

Stochastic processes are found in probabilistic systems that evolve with time. Discrete stochastic processes change by only integer time steps (for some time scale), or are characterized by discrete occurrences at arbitrary times. Discrete Stochastic Processes helps the reader develop the understanding and intuition necessary to apply stochastic process theory in engineering, science and operations research. The book approaches the subject via many simple examples which build insight into the structure of stochastic processes and the general effect of these phenomena in real systems. The book presents mathematical ideas without recourse to measure theory, using only minimal mathematical analysis. In the proofs and explanations, clarity is favored over formal rigor, and simplicity over generality. Numerous examples are given to show how results fail to hold when all the conditions are not satisfied. Audience: An excellent textbook for a graduate level course in engineering and operations research. Also an invaluable reference for all those requiring a deeper understanding of the subject.

Stationary Stochastic Processes

Theory and Applications

DOWNLOAD NOW »

Author: Georg Lindgren

Publisher: CRC Press

ISBN: 1466557796

Category: Mathematics

Page: 375

View: 9151

Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.

Basics of Applied Stochastic Processes

DOWNLOAD NOW »

Author: Richard Serfozo

Publisher: Springer Science & Business Media

ISBN: 3540893326

Category: Mathematics

Page: 443

View: 4295

Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

Adventures in Stochastic Processes

DOWNLOAD NOW »

Author: Sidney I. Resnick

Publisher: Springer Science & Business Media

ISBN: 1461203872

Category: Mathematics

Page: 626

View: 9413

Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.

Stochastic Processes

DOWNLOAD NOW »

Author: Richard F. Bass

Publisher: Cambridge University Press

ISBN: 113950147X

Category: Mathematics

Page: N.A

View: 2805

This comprehensive guide to stochastic processes gives a complete overview of the theory and addresses the most important applications. Pitched at a level accessible to beginning graduate students and researchers from applied disciplines, it is both a course book and a rich resource for individual readers. Subjects covered include Brownian motion, stochastic calculus, stochastic differential equations, Markov processes, weak convergence of processes and semigroup theory. Applications include the Black–Scholes formula for the pricing of derivatives in financial mathematics, the Kalman–Bucy filter used in the US space program and also theoretical applications to partial differential equations and analysis. Short, readable chapters aim for clarity rather than full generality. More than 350 exercises are included to help readers put their new-found knowledge to the test and to prepare them for tackling the research literature.

Introduction to Stochastic Processes

DOWNLOAD NOW »

Author: Erhan Cinlar

Publisher: Courier Corporation

ISBN: 0486276325

Category: Mathematics

Page: 416

View: 3721

Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

Basic Stochastic Processes

A Course Through Exercises

DOWNLOAD NOW »

Author: Zdzislaw Brzezniak,Tomasz Zastawniak

Publisher: Springer Science & Business Media

ISBN: 1447105338

Category: Mathematics

Page: 226

View: 9118

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

Theory and Statistical Applications of Stochastic Processes

DOWNLOAD NOW »

Author: Yuliya Mishura,Georgiy Shevchenko

Publisher: John Wiley & Sons

ISBN: 1786300508

Category: Mathematics

Page: 400

View: 4541

This book is concerned with the theory of stochastic processes and the theoretical aspects of statistics for stochastic processes. It combines classic topics such as construction of stochastic processes, associated filtrations, processes with independent increments, Gaussian processes, martingales, Markov properties, continuity and related properties of trajectories with contemporary subjects: integration with respect to Gaussian processes, Itȏ integration, stochastic analysis, stochastic differential equations, fractional Brownian motion and parameter estimation in diffusion models.

Essentials of Stochastic Processes

DOWNLOAD NOW »

Author: Richard Durrett

Publisher: Springer

ISBN: 3319456148

Category: Mathematics

Page: 275

View: 7079

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Random Processes for Engineers

DOWNLOAD NOW »

Author: Bruce Hajek

Publisher: Cambridge University Press

ISBN: 1316241246

Category: Technology & Engineering

Page: N.A

View: 2819

This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).

Stochastic Processes with Applications

DOWNLOAD NOW »

Author: Rabi N. Bhattacharya,Edward C. Waymire

Publisher: SIAM

ISBN: 0898716896

Category: Mathematics

Page: 184

View: 2794

This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.

Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory

DOWNLOAD NOW »

Author: Harold Joseph Kushner

Publisher: MIT Press

ISBN: 9780262110907

Category: Computers

Page: 269

View: 3888

Control and communications engineers, physicists, and probability theorists, among others, will find this book unique. It contains a detailed development of approximation and limit theorems and methods for random processes and applies them to numerous problems of practical importance. In particular, it develops usable and broad conditions and techniques for showing that a sequence of processes converges to a Markov diffusion or jump process. This is useful when the natural physical model is quite complex, in which case a simpler approximation la diffusion process, for example) is usually made. The book simplifies and extends some important older methods and develops some powerful new ones applicable to a wide variety of limit and approximation problems. The theory of weak convergence of probability measures is introduced along with general and usable methods (for example, perturbed test function, martingale, and direct averaging) for proving tightness and weak convergence. Kushner's study begins with a systematic development of the method. It then treats dynamical system models that have state-dependent noise or nonsmooth dynamics. Perturbed Liapunov function methods are developed for stability studies of nonMarkovian problems and for the study of asymptotic distributions of non-Markovian systems. Three chapters are devoted to applications in control and communication theory (for example, phase-locked loops and adoptive filters). Smallnoise problems and an introduction to the theory of large deviations and applications conclude the book. Harold J. Kushner is Professor of Applied Mathematics and Engineering at Brown University and is one of the leading researchers in the area of stochastic processes concerned with analysis and synthesis in control and communications theory. This book is the sixth in The MIT Press Series in Signal Processing, Optimization, and Control, edited by Alan S. Willsky.

A Basic Course in Measure and Probability

Theory for Applications

DOWNLOAD NOW »

Author: Ross Leadbetter,Stamatis Cambanis,Vladas Pipiras

Publisher: Cambridge University Press

ISBN: 1107020409

Category: Mathematics

Page: 376

View: 3921

A concise introduction covering all of the measure theory and probability most useful for statisticians.

Functional Analysis for Probability and Stochastic Processes

An Introduction

DOWNLOAD NOW »

Author: Adam Bobrowski

Publisher: Cambridge University Press

ISBN: 9781139443883

Category: Mathematics

Page: N.A

View: 6378

This text is designed both for students of probability and stochastic processes, and for students of functional analysis. For the reader not familiar with functional analysis a detailed introduction to necessary notions and facts is provided. However, this is not a straight textbook in functional analysis; rather, it presents some chosen parts of functional analysis that can help understand ideas from probability and stochastic processes. The subjects range from basic Hilbert and Banach spaces, through weak topologies and Banach algebras, to the theory of semigroups of bounded linear operators. Numerous standard and non-standard examples and exercises make the book suitable as a course textbook or for self-study.

Stochastic Processes and Applications

Diffusion Processes, the Fokker-Planck and Langevin Equations

DOWNLOAD NOW »

Author: Grigorios A. Pavliotis

Publisher: Springer

ISBN: 1493913239

Category: Mathematics

Page: 339

View: 1700

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Introduction to Stochastic Processes, Second Edition

DOWNLOAD NOW »

Author: Gregory F. Lawler

Publisher: CRC Press

ISBN: 9781584886518

Category: Mathematics

Page: 248

View: 8816

Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.

Introduction to Stochastic Processes with R

DOWNLOAD NOW »

Author: Robert P. Dobrow

Publisher: John Wiley & Sons

ISBN: 1118740653

Category: Mathematics

Page: 504

View: 6843

An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical freeware R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: Over 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and interesting supplemental topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black-Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion website that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.

Markov Processes for Stochastic Modeling

DOWNLOAD NOW »

Author: Oliver Ibe

Publisher: Newnes

ISBN: 0124078397

Category: Mathematics

Page: 514

View: 4435

Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. Presents both the theory and applications of the different aspects of Markov processes Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.