Statistics and Data Analysis for Financial Engineering

DOWNLOAD NOW »

Author: David Ruppert

Publisher: Springer Science & Business Media

ISBN: 9781441977878

Category: Business & Economics

Page: 638

View: 331

Financial engineers have access to enormous quantities of data but need powerful methods for extracting quantitative information, particularly about volatility and risks. Key features of this textbook are: illustration of concepts with financial markets and economic data, R Labs with real-data exercises, and integration of graphical and analytic methods for modeling and diagnosing modeling errors. Despite some overlap with the author's undergraduate textbook Statistics and Finance: An Introduction, this book differs from that earlier volume in several important aspects: it is graduate-level; computations and graphics are done in R; and many advanced topics are covered, for example, multivariate distributions, copulas, Bayesian computations, VaR and expected shortfall, and cointegration. The prerequisites are basic statistics and probability, matrices and linear algebra, and calculus. Some exposure to finance is helpful.

Einführung in die Statistik der Finanzmärkte

DOWNLOAD NOW »

Author: Jürgen Franke,Wolfgang Karl Härdle,Christian Matthias Hafner

Publisher: Springer-Verlag

ISBN: 3642170498

Category: Business & Economics

Page: 428

View: 587

R für Dummies

DOWNLOAD NOW »

Author: Andrie de Vries,Joris Meys

Publisher: John Wiley & Sons

ISBN: 3527812520

Category: Computers

Page: 414

View: 1425

Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.

Statistik mit Excel für Dummies

DOWNLOAD NOW »

Author: Joseph Schmuller

Publisher: John Wiley & Sons

ISBN: 3527811702

Category: Computers

Page: 535

View: 5238

Statistiken und Aussagen zu Wahrscheinlichkeiten begegnen uns heute überall: Die Umsatzentwicklung in Unternehmen, Hochrechnungen für Wahlergebnisse, PISA-Ergebnisse fünfzehnjähriger Schüler sind nur drei von zahlreichen Beispielen. Joseph Schmuller zeigt Ihnen in diesem Buch, wie Sie die Zahlen in den Griff bekommen und Daten, Statistiken und Wahrscheinlichkeiten richtig lesen und interpretieren. Dafür brauchen Sie keinen Statistikkurs zu belegen und kein Mathegenie zu sein. Für alles gibt es in Excel die passende Funktion und das passende Werkzeug. So können Sie Theorie und Praxis sofort miteinander verbinden.

Optimal Statistical Inference in Financial Engineering

DOWNLOAD NOW »

Author: Masanobu Taniguchi,Junichi Hirukawa,Kenichiro Tamaki

Publisher: CRC Press

ISBN: 9781420011036

Category: Mathematics

Page: 384

View: 7132

Until now, few systematic studies of optimal statistical inference for stochastic processes had existed in the financial engineering literature, even though this idea is fundamental to the field. Balancing statistical theory with data analysis, Optimal Statistical Inference in Financial Engineering examines how stochastic models can effectively describe actual financial data and illustrates how to properly estimate the proposed models. After explaining the elements of probability and statistical inference for independent observations, the book discusses the testing hypothesis and discriminant analysis for independent observations. It then explores stochastic processes, many famous time series models, their asymptotically optimal inference, and the problem of prediction, followed by a chapter on statistical financial engineering that addresses option pricing theory, the statistical estimation for portfolio coefficients, and value-at-risk (VaR) problems via residual empirical return processes. The final chapters present some models for interest rates and discount bonds, discuss their no-arbitrage pricing theory, investigate problems of credit rating, and illustrate the clustering of stock returns in both the New York and Tokyo Stock Exchanges. Basing results on a modern, unified optimal inference approach for various time series models, this reference underlines the importance of stochastic models in the area of financial engineering.

Statistik-Workshop für Programmierer

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 3929

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Statistical Analysis of Financial Data in R

DOWNLOAD NOW »

Author: René Carmona

Publisher: Springer Science & Business Media

ISBN: 1461487889

Category: Business & Economics

Page: 588

View: 8264

Although there are many books on mathematical finance, few deal with the statistical aspects of modern data analysis as applied to financial problems. This textbook fills this gap by addressing some of the most challenging issues facing financial engineers. It shows how sophisticated mathematics and modern statistical techniques can be used in the solutions of concrete financial problems. Concerns of risk management are addressed by the study of extreme values, the fitting of distributions with heavy tails, the computation of values at risk (VaR), and other measures of risk. Principal component analysis (PCA), smoothing, and regression techniques are applied to the construction of yield and forward curves. Time series analysis is applied to the study of temperature options and nonparametric estimation. Nonlinear filtering is applied to Monte Carlo simulations, option pricing and earnings prediction. This textbook is intended for undergraduate students majoring in financial engineering, or graduate students in a Master in finance or MBA program. It is sprinkled with practical examples using market data, and each chapter ends with exercises. Practical examples are solved in the R computing environment. They illustrate problems occurring in the commodity, energy and weather markets, as well as the fixed income, equity and credit markets. The examples, experiments and problem sets are based on the library Rsafd developed for the purpose of the text. The book should help quantitative analysts learn and implement advanced statistical concepts. Also, it will be valuable for researchers wishing to gain experience with financial data, implement and test mathematical theories, and address practical issues that are often ignored or underestimated in academic curricula. This is the new, fully-revised edition to the book Statistical Analysis of Financial Data in S-Plus. René Carmona is the Paul M. Wythes '55 Professor of Engineering and Finance at Princeton University in the department of Operations Research and Financial Engineering, and Director of Graduate Studies of the Bendheim Center for Finance. His publications include over one hundred articles and eight books in probability and statistics. He was elected Fellow of the Institute of Mathematical Statistics in 1984, and of the Society for Industrial and Applied Mathematics in 2010. He is on the editorial board of several peer-reviewed journals and book series. Professor Carmona has developed computer programs for teaching statistics and research in signal analysis and financial engineering. He has worked for many years on energy, the commodity markets and more recently in environmental economics, and he is recognized as a leading researcher and expert in these areas.

Mathematik und Technologie

DOWNLOAD NOW »

Author: Christiane Rousseau,Yvan Saint-Aubin

Publisher: Springer-Verlag

ISBN: 3642300928

Category: Mathematics

Page: 609

View: 9540

Zusammen mit der Abstraktion ist die Mathematik das entscheidende Werkzeug für technologische Innovationen. Das Buch bietet eine Einführung in zahlreiche Anwendungen der Mathematik auf dem Gebiet der Technologie. Meist werden moderne Anwendungen dargestellt, die heute zum Alltag gehören. Die mathematischen Grundlagen für technologische Anwendungen sind dabei relativ elementar, was die Leistungsstärke der mathematischen Modellbildung und der mathematischen Hilfsmittel beweist. Mit zahlreichen originellen Übungen am Ende eines jeden Kapitels.

Zeitreihenmodelle

DOWNLOAD NOW »

Author: Andrew C. Harvey

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3486786741

Category: Business & Economics

Page: 396

View: 695

Gegenstand des Werkes sind Analyse und Modellierung von Zeitreihen. Es wendet sich an Studierende und Praktiker aller Disziplinen, in denen Zeitreihenbeobachtungen wichtig sind.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

DOWNLOAD NOW »

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 4075

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Modeling Techniques in Predictive Analytics

Business Problems and Solutions with R, Revised and Expanded Edition

DOWNLOAD NOW »

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 0133886190

Category: Computers

Page: 384

View: 3307

To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Modeling Techniques in Predictive Analytics with Python and R

A Guide to Data Science

DOWNLOAD NOW »

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 013389214X

Category: Computers

Page: 448

View: 8607

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Big Data

Die Revolution, die unser Leben verändern wird

DOWNLOAD NOW »

Author: Viktor Mayer-Schönberger,Viktor; Cukier Mayer-Schönberger

Publisher: Redline Wirtschaft

ISBN: 3864144590

Category: Political Science

Page: 288

View: 9751

Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.

Statistical Inference for Financial Engineering

DOWNLOAD NOW »

Author: Masanobu Taniguchi,Tomoyuki Amano,Hiroaki Ogata,Hiroyuki Taniai

Publisher: Springer Science & Business Media

ISBN: 3319034979

Category: Business & Economics

Page: 118

View: 5274

​This monograph provides the fundamentals of statistical inference for financial engineering and covers some selected methods suitable for analyzing financial time series data. In order to describe the actual financial data, various stochastic processes, e.g. non-Gaussian linear processes, non-linear processes, long-memory processes, locally stationary processes etc. are introduced and their optimal estimation is considered as well. This book also includes several statistical approaches, e.g., discriminant analysis, the empirical likelihood method, control variate method, quantile regression, realized volatility etc., which have been recently developed and are considered to be powerful tools for analyzing the financial data, establishing a new bridge between time series and financial engineering. This book is well suited as a professional reference book on finance, statistics and statistical financial engineering. Readers are expected to have an undergraduate-level knowledge of statistics.

Artificial Intelligence Applications and Innovations

AIAI 2014 Workshops: CoPA, MHDW, IIVC, and MT4BD, Rhodes, Greece, September 19-21, 2014, Proceedings

DOWNLOAD NOW »

Author: Lazaros Iliadis,Ilias Maglogiannis,Harris Papadopoulos,Spyros Sioutas,Christos Makris

Publisher: Springer

ISBN: 3662447223

Category: Computers

Page: 352

View: 4932

This book constitutes the refereed proceedings of four AIAI 2014 workshops, co-located with the 10th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2014, held in Rhodes, Greece, in September 2014: the Third Workshop on Intelligent Innovative Ways for Video-to-Video Communications in Modern Smart Cities, IIVC 2014; the Third Workshop on Mining Humanistic Data, MHDW 2014; the Third Workshop on Conformal Prediction and Its Applications, CoPA 2014; and the First Workshop on New Methods and Tools for Big Data, MT4BD 2014. The 36 revised full papers presented were carefully reviewed and selected from numerous submissions. They cover a large range of topics in basic AI research approaches and applications in real world scenarios.

Applied Probabilistic Calculus for Financial Engineering

An Introduction Using R

DOWNLOAD NOW »

Author: Bertram K. C. Chan

Publisher: John Wiley & Sons

ISBN: 111938804X

Category: Mathematics

Page: 536

View: 3254

Illustrates how R may be used successfully to solve problems in quantitative finance Applied Probabilistic Calculus for Financial Engineering: An Introduction Using R provides R recipes for asset allocation and portfolio optimization problems. It begins by introducing all the necessary probabilistic and statistical foundations, before moving on to topics related to asset allocation and portfolio optimization with R codes illustrated for various examples. This clear and concise book covers financial engineering, using R in data analysis, and univariate, bivariate, and multivariate data analysis. It examines probabilistic calculus for modeling financial engineering—walking the reader through building an effective financial model from the Geometric Brownian Motion (GBM) Model via probabilistic calculus, while also covering Ito Calculus. Classical mathematical models in financial engineering and modern portfolio theory are discussed—along with the Two Mutual Fund Theorem and The Sharpe Ratio. The book also looks at R as a calculator and using R in data analysis in financial engineering. Additionally, it covers asset allocation using R, financial risk modeling and portfolio optimization using R, global and local optimal values, locating functional maxima and minima, and portfolio optimization by performance analytics in CRAN. Covers optimization methodologies in probabilistic calculus for financial engineering Answers the question: What does a "Random Walk" Financial Theory look like? Covers the GBM Model and the Random Walk Model Examines modern theories of portfolio optimization, including The Markowitz Model of Modern Portfolio Theory (MPT), The Black-Litterman Model, and The Black-Scholes Option Pricing Model Applied Probabilistic Calculus for Financial Engineering: An Introduction Using R s an ideal reference for professionals and students in economics, econometrics, and finance, as well as for financial investment quants and financial engineers.

Das BilderBuch -

des nützlichen und unnützen Wissens

DOWNLOAD NOW »

Author: David McCandless

Publisher: Albrecht Knaus Verlag

ISBN: 3641091993

Category: Political Science

Page: 256

View: 7418

Sehen und verstehen – was Sie in diesem Buch entdecken, wird Ihnen nicht mehr aus dem Kopf gehen. Noch nie war Wissen so schön anzusehen. Noch nie waren Zusammenhänge so leicht zu durchschauen. Das Visualisierungsgenie David McCand less erschafft aus Zahlen, Daten und Fakten einzigartige und unvergessliche Grafiken und Bilder, die unsere Synapsen zum Schwingen bringen. In welchem Land werden die meisten Bücher gelesen? Welcher Bart passt zu welchem Gesicht? Welche Musikstile beeinflussen sich wie? Welche Moralvorstellungen verbinden sich mit welcher Religion? Was verbraucht mehr Kalorien: Blümchensex oder Lesen? Welche alternativen Heilmethoden haben welche wissenschaftliche Evidenz? David McCandless ist einer der angesagtesten Informationsdesigner und gehört zu einer neuen Generation von Journalisten. Er setzt spannende Fakten ebenso überzeugend ins Bild wie komplizierte Zusammenhänge. Mithilfe von Farben und Formen macht er Wissen sichtbar. So entsteht aus über einhundert originellen Bildern ein Kaleidoskop aus nützlichem und unnützem Wissen, das einfach Spaß macht. Hoher Spaßfaktor! Ein »Lesegenuss« voller Anregungen und Überraschungen, bestens als Geschenk geeignet.

Modeling and Simulation

DOWNLOAD NOW »

Author: Hartmut Bossel

Publisher: Springer-Verlag

ISBN: 3663108228

Category: Technology & Engineering

Page: 484

View: 6953

This book is the the English Language Version of the very successful German textbook, "Modellbildung und Simulation". It provides a self-contained and complete guide to the methods and mathematical background of modeling and simulation software of dynamic systems. Furthermore, an appropriate simulation software and a collection of dynamic system models (on the accompanying disk) are highlights of the book/software-Package.Dies ist die englischsprachige Ausgabe des sehr erfolgreichen Lehrbuches "Modellbildung und Simulation". Geboten wird eine vollständige Einführung in die Methoden der Simulation dynamischer Systeme, wobei auch der notwendige mathematische Hintergrund vermittelt wird. Außerdem ist eine Simulationssoftware Bestandteil des Werkes; auf der beiliegenden Diskette befinden sich ferner 50 Beispielsysteme ("Systemzoo"), die zur spielerischen Einübung der verwendeten Verfahren hilfreich sind.

Statistics and Finance

An Introduction

DOWNLOAD NOW »

Author: David Ruppert

Publisher: Springer Science & Business Media

ISBN: 9780387202709

Category: Business & Economics

Page: 473

View: 2454

This textbook emphasizes the applications of statistics and probability to finance. It reviews the basics and advanced topics are introduced, including behavioral finance. The book serves as a text in courses, and those in the finance industry can use it for self-study.