*Theory and Applications*

Author: M. A. Goldberg

Publisher: Springer Science & Business Media

ISBN: 1475714661

Category: Science

Page: 350

View: 6622

Skip to content
# Download PDF Now

## Search Any eBook in PDF Format

# Search Results for: solution-methods-for-integral-equations-theory-and-applications-mathematical-concepts-and-methods-in-science-and-engineering

# Solution Methods for Integral Equations

# Numerical Solution of Integral Equations

# Random Integral Equations with Applications to Life Sciences and Engineering

# Computational Methods for Linear Integral Equations

# Dynamical Systems and Evolution Equations

# Problems and Methods of Optimal Structural Design

# Handbook of Mathematics for Engineers and Scientists

# Stochastic Calculus

# Variational Methods in Mathematics, Science and Engineering

# Numerical Methods for Scientists and Engineers

# Integral Transforms and Their Applications

# Reviews in numerical analysis, 1980-86

# The Theory and Applications of Iteration Methods

# Methods of Applied Mathematics for Engineers and Scientists

# Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

# Integral Transforms in Science and Engineering

# Mathematical Methods for Scientists and Engineers

# Advanced Mechanics of Piezoelectricity

# Approximate Solutions of Operator Equations

# Boundary Elements: Theory and Applications

Science

*Theory and Applications*

Author: M. A. Goldberg

Publisher: Springer Science & Business Media

ISBN: 1475714661

Category: Science

Page: 350

View: 6622

Mathematics

Author: Michael A. Golberg

Publisher: Springer Science & Business Media

ISBN: 1489925937

Category: Mathematics

Page: 418

View: 7466

In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.Mathematics

Author: N.A

Publisher: Academic Press

ISBN: 9780080956176

Category: Mathematics

Page: 322

View: 990

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filteringMathematics

Author: Prem Kythe,Pratap Puri

Publisher: Springer Science & Business Media

ISBN: 1461201012

Category: Mathematics

Page: 508

View: 5041

This book presents numerical methods and computational aspects for linear integral equations. Such equations occur in various areas of applied mathematics, physics, and engineering. The material covered in this book, though not exhaustive, offers useful techniques for solving a variety of problems. Historical information cover ing the nineteenth and twentieth centuries is available in fragments in Kantorovich and Krylov (1958), Anselone (1964), Mikhlin (1967), Lonseth (1977), Atkinson (1976), Baker (1978), Kondo (1991), and Brunner (1997). Integral equations are encountered in a variety of applications in many fields including continuum mechanics, potential theory, geophysics, electricity and mag netism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control sys tems, communication theory, mathematical economics, population genetics, queue ing theory, and medicine. Most of the boundary value problems involving differ ential equations can be converted into problems in integral equations, but there are certain problems which can be formulated only in terms of integral equations. A computational approach to the solution of integral equations is, therefore, an essential branch of scientific inquiry.Computers

*Theory and Applications*

Author: John A. Walker

Publisher: Springer Science & Business Media

ISBN: 1468410369

Category: Computers

Page: 236

View: 5885

This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.Computers

Author: Nikolai Vladimirovich Banichuk

Publisher: Springer Science & Business Media

ISBN: 1461336767

Category: Computers

Page: 313

View: 2650

The author offers a systematic and careful development of many aspects of structural optimization, particularly for beams and plates. Some of the results are new and some have appeared only in specialized Soviet journals, or as pro ceedings of conferences, and are not easily accessible to Western engineers and mathematicians. Some aspects of the theory presented here, such as optimiza tion of anisotropic properties of elastic structural elements, have not been con sidered to any extent by Western research engineers. The author's treatment is "classical", i.e., employing classical analysis. Classical calculus of variations, the complex variables approach, and the Kolosov Muskhelishvili theory are the basic techniques used. He derives many results that are of interest to practical structural engineers, such as optimum designs of structural elements submerged in a flowing fluid (which is of obvious interest in aircraft design, in ship building, in designing turbines, etc.). Optimization with incomplete information concerning the loads (which is the case in a great majority of practical design considerations) is treated thoroughly. For example, one can only estimate the weight of the traffic on a bridge, the wind load, the additional loads if a river floods, or possible earthquake loads.Mathematics

Author: Andrei D. Polyanin,Alexander V. Manzhirov

Publisher: CRC Press

ISBN: 9781584885023

Category: Mathematics

Page: 1544

View: 6263

The Handbook of Mathematics for Engineers and Scientists covers the main fields of mathematics and focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. To accommodate different mathematical backgrounds, the preeminent authors outline the material in a simplified, schematic manner, avoiding special terminology wherever possible. Organized in ascending order of complexity, the material is divided into two parts. The first part is a coherent survey of the most important definitions, formulas, equations, methods, and theorems. It covers arithmetic, elementary and analytic geometry, algebra, differential and integral calculus, special functions, calculus of variations, and probability theory. Numerous specific examples clarify the methods for solving problems and equations. The second part provides many in-depth mathematical tables, including those of exact solutions of various types of equations. This concise, comprehensive compendium of mathematical definitions, formulas, and theorems provides the foundation for exploring scientific and technological phenomena.Mathematics

*Applications in Science and Engineering*

Author: Mircea Grigoriu

Publisher: Springer Science & Business Media

ISBN: 0817682287

Category: Mathematics

Page: 775

View: 4655

Algebraic, differential, and integral equations are used in the applied sciences, en gineering, economics, and the social sciences to characterize the current state of a physical, economic, or social system and forecast its evolution in time. Generally, the coefficients of and/or the input to these equations are not precisely known be cause of insufficient information, limited understanding of some underlying phe nomena, and inherent randonmess. For example, the orientation of the atomic lattice in the grains of a polycrystal varies randomly from grain to grain, the spa tial distribution of a phase of a composite material is not known precisely for a particular specimen, bone properties needed to develop reliable artificial joints vary significantly with individual and age, forces acting on a plane from takeoff to landing depend in a complex manner on the environmental conditions and flight pattern, and stock prices and their evolution in time depend on a large number of factors that cannot be described by deterministic models. Problems that can be defined by algebraic, differential, and integral equations with random coefficients and/or input are referred to as stochastic problems. The main objective of this book is the solution of stochastic problems, that is, the determination of the probability law, moments, and/or other probabilistic properties of the state of a physical, economic, or social system. It is assumed that the operators and inputs defining a stochastic problem are specified.Mathematics

Author: K. Rektorys

Publisher: Springer Science & Business Media

ISBN: 9789027710604

Category: Mathematics

Page: 571

View: 3731

Hilbert space; Variational methods; Application of variational methods to the solution of boundary value problems in ordinary and partial differential equations; Theory of boundary value problems in differential equations based on the concept of a weak solution and on the lax-milgram theorem; The eigenvalue problem; Some special methods. Regularity of the weak solution.Mathematics

Author: Richard Hamming

Publisher: Courier Corporation

ISBN: 0486134822

Category: Mathematics

Page: 752

View: 370

This inexpensive paperback edition of a groundbreaking text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, and other topics. Revised and enlarged 2nd edition.Mathematics

Author: Lokenath Debnath,Dambaru Bhatta

Publisher: CRC Press

ISBN: 9781420010916

Category: Mathematics

Page: 728

View: 708

Keeping the style, content, and focus that made the first edition a bestseller, Integral Transforms and their Applications, Second Edition stresses the development of analytical skills rather than the importance of more abstract formulation. The authors provide a working knowledge of the analytical methods required in pure and applied mathematics, physics, and engineering. The second edition includes many new applications, exercises, comments, and observations with some sections entirely rewritten. It contains more than 500 worked examples and exercises with answers as well as hints to selected exercises. The most significant changes in the second edition include: New chapters on fractional calculus and its applications to ordinary and partial differential equations, wavelets and wavelet transformations, and Radon transform Revised chapter on Fourier transforms, including new sections on Fourier transforms of generalized functions, Poissons summation formula, Gibbs phenomenon, and Heisenbergs uncertainty principle A wide variety of applications has been selected from areas of ordinary and partial differential equations, integral equations, fluid mechanics and elasticity, mathematical statistics, fractional ordinary and partial differential equations, and special functions A broad spectrum of exercises at the end of each chapter further develops analytical skills in the theory and applications of transform methods and a deeper insight into the subject A systematic mathematical treatment of the theory and method of integral transforms, the book provides a clear understanding of the subject and its varied applications in mathematics, applied mathematics, physical sciences, and engineering.Numerical analysis

*as printed in Mathematical reviews*

Author: American Mathematical Society

Publisher: N.A

ISBN: N.A

Category: Numerical analysis

Page: 694

View: 8614

Science

Author: Ioannis K. Argyros,Ferenc Szidarovszky

Publisher: CRC Press

ISBN: 9780849380143

Category: Science

Page: 368

View: 7153

The Theory and Applications of Iteration Methods focuses on an abstract iteration scheme that consists of the recursive application of a point-to-set mapping. Each chapter presents new theoretical results and important applications in engineering, dynamic economic systems, and input-output systems. At the end of each chapter, case studies and numerical examples are presented from different fields of engineering and economics. Following an outline of general iteration schemes, the authors extend the discrete time-scale Liapunov theory to time-dependent, higher order, nonlinear difference equations. The monotone convergence to the solution is examined in and comparison theorems are proven . Results generalize well-known classical theorems, such as the contraction mapping principle, the lemma of Kantorovich, the famous Gronwall lemma, and the stability theorem of Uzawa. The book explores conditions for the convergence of special single- and two-step methods such as Newton's method, modified Newton's method, and Newton-like methods generated by point-to-point mappings in a Banach space setting. Conditions are examined for monotone convergence of Newton's methods and their variants. Students and professionals in engineering, the physical sciences, mathematics, and economics will benefit from the book's detailed examples, step-by-step explanations, and effective organization.Mathematics

Author: Tomas B. Co

Publisher: Cambridge University Press

ISBN: 1107004128

Category: Mathematics

Page: 559

View: 6707

This engineering mathematics textbook is rich with examples, applications and exercises, and emphasises applying matrices.Mathematics

Author: Kuzman Adzievski,Abul Hasan Siddiqi

Publisher: CRC Press

ISBN: 1466510579

Category: Mathematics

Page: 648

View: 1375

With a special emphasis on engineering and science applications, this textbook provides a mathematical introduction to PDEs at the undergraduate level. It takes a new approach to PDEs by presenting computation as an integral part of the study of differential equations. The authors use Mathematica® along with graphics to improve understanding and interpretation of concepts. They also present exercises in each chapter and solutions to selected examples. Topics discussed include Laplace and Fourier transforms as well as Sturm-Liouville boundary value problems.Science

Author: K. Wolf

Publisher: Springer Science & Business Media

ISBN: 1475708726

Category: Science

Page: 489

View: 3819

Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward "single-particle" solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The "tilt" in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in "classical" systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though.Mathematics

Author: Donald Allan McQuarrie

Publisher: University Science Books

ISBN: 9781891389245

Category: Mathematics

Page: 1161

View: 4719

Intended for upper-level undergraduate and graduate courses in chemistry, physics, mathematics and engineering, this text is also suitable as a reference for advanced students in the physical sciences. Detailed problems and worked examples are included.Technology & Engineering

Author: Qinghua Qin

Publisher: Springer Science & Business Media

ISBN: 3642297676

Category: Technology & Engineering

Page: 332

View: 6434

"Advanced Mechanics of Piezoelectricity" presents a comprehensive treatment of piezoelectric materials using linear electroelastic theory, symplectic models, and Hamiltonian systems. It summarizes the current state of practice and presents the most recent research findings in piezoelectricity. It is intended for researchers and graduate students in the fields of applied mechanics, material science and engineering, computational engineering, and aerospace engineering. Dr. Qinghua Qin is a professor at the School of Engineering, Australian National University, Australia.Mathematics

Author: Mingjun Chen,Zhongying Chen,Guanrong Chen

Publisher: World Scientific

ISBN: 9789810230647

Category: Mathematics

Page: 343

View: 8933

This book offers an elementary and self-contained introduction to many fundamental issues concerning approximate solutions of operator equations formulated in an abstract Banach space setting, including important topics such as solvability, computational schemes, convergence, stability and error estimates. The operator equations under investigation include various linear and nonlinear types of ordinary and partial differential equations, integral equations, and abstract evolution equations, which are frequently involved in applied mathematics and engineering applications.Each chapter contains well-selected examples and exercises, for the purposes of demonstrating the fundamental theories and methods developed in the text and familiarizing the reader with functional analysis techniques useful for numerical solutions of various operator equations.Technology & Engineering

Author: John T. Katsikadelis

Publisher: Elsevier

ISBN: 9780080528243

Category: Technology & Engineering

Page: 448

View: 9463

The author's ambition for this publication was to make BEM accessible to the student as well as to the professional engineer. For this reason, his main task was to organize and present the material in such a way so that the book becomes "user-friendly" and easy to comprehend, taking into account only the mathematics and mechanics to which students have been exposed during their undergraduate studies. This effort led to an innovative, in many aspects, way of presenting BEM, including the derivation of fundamental solutions, the integral representation of the solutions and the boundary integral equations for various governing differential equations in a simple way minimizing a recourse to mathematics with which the student is not familiar. The indicial and tensorial notations, though they facilitate the author's work and allow to borrow ready to use expressions from the literature, have been avoided in the present book. Nevertheless, all the necessary preliminary mathematical concepts have been included in order to make the book complete and self-sufficient. Throughout the book, every concept is followed by example problems, which have been worked out in detail and with all the necessary clarifications. Furthermore, each chapter of the book is enriched with problems-to-solve. These problems serve a threefold purpose. Some of them are simple and aim at applying and better understanding the presented theory, some others are more difficult and aim at extending the theory to special cases requiring a deeper understanding of the concepts, and others are small projects which serve the purpose of familiarizing the student with BEM programming and the programs contained in the CD-ROM. The latter class of problems is very important as it helps students to comprehend the usefulness and effectiveness of the method by solving real-life engineering problems. Through these problems students realize that the BEM is a powerful computational tool and not an alternative theoretical approach for dealing with physical problems. My experience in teaching BEM shows that this is the students' most favorite type of problems. They are delighted to solve them, since they integrate their knowledge and make them feel confident in mastering BEM. The CD-ROM which accompanies the book contains the source codes of all the computer programs developed in the book, so that the student or the engineer can use them for the solution of a broad class of problems. Among them are general potential problems, problems of torsion, thermal conductivity, deflection of membranes and plates, flow of incompressible fluids, flow through porous media, in isotropic or anisotropic, homogeneous or composite bodies, as well as plane elastostatic problems in simply or multiply connected domains. As one can readily find out from the variety of the applications, the book is useful for engineers of all disciplines. The author is hopeful that the present book will introduce the reader to BEM in an easy, smooth and pleasant way and also contribute to its dissemination as a modern robust computational tool for solving engineering problems.