*Theory and Applications*

Author: M. A. Goldberg

Publisher: Springer Science & Business Media

ISBN: 1475714661

Category: Juvenile Nonfiction

Page: 350

View: 6933

Skip to content
# Download PDF Now

## Search Any eBook in PDF Format

# Search Results for: solution-methods-for-integral-equations-theory-and-applications-mathematical-concepts-and-methods-in-science-and-engineering

# Solution Methods for Integral Equations

# Numerical Solution of Integral Equations

# Dynamical Systems and Evolution Equations

# Computational Methods for Linear Integral Equations

# Problems and Methods of Optimal Structural Design

# Variational Methods in Mathematics, Science and Engineering

# Integral Transforms in Science and Engineering

# Integral Transforms and Their Applications

# Green's Functions and Boundary Value Problems

# Reviews in numerical analysis, 1980-86

# The Theory and Applications of Iteration Methods

# Mathematical Methods for Scientists and Engineers

# Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

# Methods of Applied Mathematics for Engineers and Scientists

# Approximate Solutions of Operator Equations

# Random Integral Equations with Applications to Life Sciences and Engineering

# MATHEMATICAL METHODS IN CHEMICAL ENGINEERING

# Advanced Mechanics of Piezoelectricity

# Linear Partial Differential Equations for Scientists and Engineers

# Stochastic Calculus

Juvenile Nonfiction

*Theory and Applications*

Author: M. A. Goldberg

Publisher: Springer Science & Business Media

ISBN: 1475714661

Category: Juvenile Nonfiction

Page: 350

View: 6933

Mathematics

Author: Michael A. Golberg

Publisher: Springer Science & Business Media

ISBN: 1489925937

Category: Mathematics

Page: 418

View: 6482

In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.Computers

*Theory and Applications*

Author: John A. Walker

Publisher: Springer Science & Business Media

ISBN: 1468410369

Category: Computers

Page: 236

View: 1936

This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.Mathematics

Author: Prem Kythe,Pratap Puri

Publisher: Springer Science & Business Media

ISBN: 1461201012

Category: Mathematics

Page: 508

View: 7218

This book presents numerical methods and computational aspects for linear integral equations. Such equations occur in various areas of applied mathematics, physics, and engineering. The material covered in this book, though not exhaustive, offers useful techniques for solving a variety of problems. Historical information cover ing the nineteenth and twentieth centuries is available in fragments in Kantorovich and Krylov (1958), Anselone (1964), Mikhlin (1967), Lonseth (1977), Atkinson (1976), Baker (1978), Kondo (1991), and Brunner (1997). Integral equations are encountered in a variety of applications in many fields including continuum mechanics, potential theory, geophysics, electricity and mag netism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control sys tems, communication theory, mathematical economics, population genetics, queue ing theory, and medicine. Most of the boundary value problems involving differ ential equations can be converted into problems in integral equations, but there are certain problems which can be formulated only in terms of integral equations. A computational approach to the solution of integral equations is, therefore, an essential branch of scientific inquiry.Computers

Author: Nikolai Vladimirovich Banichuk

Publisher: Springer Science & Business Media

ISBN: 1461336767

Category: Computers

Page: 313

View: 4339

The author offers a systematic and careful development of many aspects of structural optimization, particularly for beams and plates. Some of the results are new and some have appeared only in specialized Soviet journals, or as pro ceedings of conferences, and are not easily accessible to Western engineers and mathematicians. Some aspects of the theory presented here, such as optimiza tion of anisotropic properties of elastic structural elements, have not been con sidered to any extent by Western research engineers. The author's treatment is "classical", i.e., employing classical analysis. Classical calculus of variations, the complex variables approach, and the Kolosov Muskhelishvili theory are the basic techniques used. He derives many results that are of interest to practical structural engineers, such as optimum designs of structural elements submerged in a flowing fluid (which is of obvious interest in aircraft design, in ship building, in designing turbines, etc.). Optimization with incomplete information concerning the loads (which is the case in a great majority of practical design considerations) is treated thoroughly. For example, one can only estimate the weight of the traffic on a bridge, the wind load, the additional loads if a river floods, or possible earthquake loads.Mathematics

Author: K. Rektorys

Publisher: Springer Science & Business Media

ISBN: 9789027710604

Category: Mathematics

Page: 551

View: 9355

Hilbert space; Variational methods; Application of variational methods to the solution of boundary value problems in ordinary and partial differential equations; Theory of boundary value problems in differential equations based on the concept of a weak solution and on the lax-milgram theorem; The eigenvalue problem; Some special methods. Regularity of the weak solution.Juvenile Nonfiction

Author: K. Wolf

Publisher: Springer Science & Business Media

ISBN: 1475708726

Category: Juvenile Nonfiction

Page: 489

View: 1050

Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward "single-particle" solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The "tilt" in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in "classical" systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though.Mathematics

Author: Lokenath Debnath,Dambaru Bhatta

Publisher: CRC Press

ISBN: 9781420010916

Category: Mathematics

Page: 728

View: 4033

Keeping the style, content, and focus that made the first edition a bestseller, Integral Transforms and their Applications, Second Edition stresses the development of analytical skills rather than the importance of more abstract formulation. The authors provide a working knowledge of the analytical methods required in pure and applied mathematics, physics, and engineering. The second edition includes many new applications, exercises, comments, and observations with some sections entirely rewritten. It contains more than 500 worked examples and exercises with answers as well as hints to selected exercises. The most significant changes in the second edition include: New chapters on fractional calculus and its applications to ordinary and partial differential equations, wavelets and wavelet transformations, and Radon transform Revised chapter on Fourier transforms, including new sections on Fourier transforms of generalized functions, Poissons summation formula, Gibbs phenomenon, and Heisenbergs uncertainty principle A wide variety of applications has been selected from areas of ordinary and partial differential equations, integral equations, fluid mechanics and elasticity, mathematical statistics, fractional ordinary and partial differential equations, and special functions A broad spectrum of exercises at the end of each chapter further develops analytical skills in the theory and applications of transform methods and a deeper insight into the subject A systematic mathematical treatment of the theory and method of integral transforms, the book provides a clear understanding of the subject and its varied applications in mathematics, applied mathematics, physical sciences, and engineering.Mathematics

Author: Ivar Stakgold,Michael J. Holst

Publisher: John Wiley & Sons

ISBN: 0470906529

Category: Mathematics

Page: 736

View: 3428

Praise for the Second Edition "This book is an excellent introduction to the wide field of boundary value problems."—Journal of Engineering Mathematics "No doubt this textbook will be useful for both students and research workers."—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.Numerical analysis

*as printed in Mathematical reviews*

Author: American Mathematical Society

Publisher: N.A

ISBN: N.A

Category: Numerical analysis

Page: 694

View: 2679

Science

Author: Ioannis K. Argyros,Ferenc Szidarovszky

Publisher: CRC Press

ISBN: 9780849380143

Category: Science

Page: 368

View: 2641

The Theory and Applications of Iteration Methods focuses on an abstract iteration scheme that consists of the recursive application of a point-to-set mapping. Each chapter presents new theoretical results and important applications in engineering, dynamic economic systems, and input-output systems. At the end of each chapter, case studies and numerical examples are presented from different fields of engineering and economics. Following an outline of general iteration schemes, the authors extend the discrete time-scale Liapunov theory to time-dependent, higher order, nonlinear difference equations. The monotone convergence to the solution is examined in and comparison theorems are proven . Results generalize well-known classical theorems, such as the contraction mapping principle, the lemma of Kantorovich, the famous Gronwall lemma, and the stability theorem of Uzawa. The book explores conditions for the convergence of special single- and two-step methods such as Newton's method, modified Newton's method, and Newton-like methods generated by point-to-point mappings in a Banach space setting. Conditions are examined for monotone convergence of Newton's methods and their variants. Students and professionals in engineering, the physical sciences, mathematics, and economics will benefit from the book's detailed examples, step-by-step explanations, and effective organization.Mathematics

Author: Donald Allan McQuarrie

Publisher: University Science Books

ISBN: 9781891389245

Category: Mathematics

Page: 1161

View: 2667

Intended for upper-level undergraduate and graduate courses in chemistry, physics, mathematics and engineering, this text is also suitable as a reference for advanced students in the physical sciences. Detailed problems and worked examples are included.Mathematics

Author: Kuzman Adzievski,Abul Hasan Siddiqi

Publisher: CRC Press

ISBN: 1466510579

Category: Mathematics

Page: 648

View: 686

With a special emphasis on engineering and science applications, this textbook provides a mathematical introduction to PDEs at the undergraduate level. It takes a new approach to PDEs by presenting computation as an integral part of the study of differential equations. The authors use Mathematica® along with graphics to improve understanding and interpretation of concepts. They also present exercises in each chapter and solutions to selected examples. Topics discussed include Laplace and Fourier transforms as well as Sturm-Liouville boundary value problems.Mathematics

Author: Tomas B. Co

Publisher: Cambridge University Press

ISBN: 1107004128

Category: Mathematics

Page: 559

View: 550

This engineering mathematics textbook is rich with examples, applications and exercises, and emphasises applying matrices.Mathematics

Author: Mingjun Chen,Zhongying Chen,Guanrong Chen

Publisher: World Scientific

ISBN: 9789810230647

Category: Mathematics

Page: 343

View: 3583

This book offers an elementary and self-contained introduction to many fundamental issues concerning approximate solutions of operator equations formulated in an abstract Banach space setting, including important topics such as solvability, computational schemes, convergence, stability and error estimates. The operator equations under investigation include various linear and nonlinear types of ordinary and partial differential equations, integral equations, and abstract evolution equations, which are frequently involved in applied mathematics and engineering applications.Each chapter contains well-selected examples and exercises, for the purposes of demonstrating the fundamental theories and methods developed in the text and familiarizing the reader with functional analysis techniques useful for numerical solutions of various operator equations.Mathematics

Author: N.A

Publisher: Academic Press

ISBN: 9780080956176

Category: Mathematics

Page: 322

View: 4771

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filteringScience

Author: S. PUSHPAVANAM

Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120312623

Category: Science

Page: 336

View: 7272

This comprehensive, well organized and easy to read book presents concepts in a unified framework to establish a similarity in the methods of solutions and analysis of such diverse systems as algebraic equations, ordinary differential equations and partial differential equations. The distin-guishing feature of the book is the clear focus on analytical methods of solving equations. The text explains how the methods meant to elucidate linear problems can be extended to analyse nonlinear problems. The book also discusses in detail modern concepts like bifurcation theory and chaos.To attract engineering students to applied mathematics, the author explains the concepts in a clear, concise and straightforward manner, with the help of examples and analysis. The significance of analytical methods and concepts for the engineer/scientist interested in numerical applications is clearly brought out.Intended as a textbook for the postgraduate students in engineering, the book could also be of great help to the research students.Technology & Engineering

Author: Qinghua Qin

Publisher: Springer Science & Business Media

ISBN: 3642297676

Category: Technology & Engineering

Page: 332

View: 1601

"Advanced Mechanics of Piezoelectricity" presents a comprehensive treatment of piezoelectric materials using linear electroelastic theory, symplectic models, and Hamiltonian systems. It summarizes the current state of practice and presents the most recent research findings in piezoelectricity. It is intended for researchers and graduate students in the fields of applied mechanics, material science and engineering, computational engineering, and aerospace engineering. Dr. Qinghua Qin is a professor at the School of Engineering, Australian National University, Australia.Mathematics

Author: Tyn Myint-U,Lokenath Debnath

Publisher: Springer Science & Business Media

ISBN: 9780817645601

Category: Mathematics

Page: 778

View: 5654

This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.Mathematics

*Applications in Science and Engineering*

Author: Mircea Grigoriu

Publisher: Springer Science & Business Media

ISBN: 9780817642426

Category: Mathematics

Page: 774

View: 5142

"This self-contained text may be used for several graduate courses and as an important reference resource for applied scientists interested in analytical and numerical methods for solving stochastic problems."--BOOK JACKET.