Quantum Groups

DOWNLOAD NOW »

Author: Christian Kassel

Publisher: Springer Science & Business Media

ISBN: 1461207835

Category: Mathematics

Page: 534

View: 5632

Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

Lectures on Quantum Groups

DOWNLOAD NOW »

Author: Jens Carsten Jantzen

Publisher: American Mathematical Soc.

ISBN: 9780821872345

Category: Mathematics

Page: 266

View: 2215

Starting with the quantum analog of sl2, the author carefully leads the reader through all the details necessary for full understanding of the subject, particularly emphasizing similarities and differences with the classical theory. The final chapters of the book describe the Kashiwara-Lusztig theory of so-called crystal (or canonical) bases in representations of complex semisimple Lie algebra.

Quantum Theory for Mathematicians

DOWNLOAD NOW »

Author: Brian C. Hall

Publisher: Springer Science & Business Media

ISBN: 1461471168

Category: Science

Page: 554

View: 5188

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

A Guide to Quantum Groups

DOWNLOAD NOW »

Author: Vyjayanthi Chari,Andrew N. Pressley

Publisher: Cambridge University Press

ISBN: 9780521558846

Category: Mathematics

Page: 651

View: 9858

Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. This book gives a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Researchers in mathematics and theoretical physics will enjoy this book.

Introduction to Quantum Groups and Crystal Bases

DOWNLOAD NOW »

Author: Jin Hong,Seok-Jin Kang

Publisher: American Mathematical Soc.

ISBN: 0821828746

Category: Mathematics

Page: 307

View: 2965

The notion of a ``quantum group'' was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras. And over the past 20 years, they have turned out to be the fundamental algebraic structure behind many branches of mathematics and mathematical physics, such as solvable lattice models in statistical mechanics, topological invariant theory of links and knots, representation theory of Kac-Moody algebras, representation theory of algebraic structures, topological quantum field theory, geometric representation theory, and $C^*$-algebras. In particular, the theory of ``crystal bases'' or ``canonical bases'' developed independently by M. Kashiwara and G. Lusztig provides a powerful combinatorial and geometric tool to study the representations of quantum groups. The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.

An Invitation to Quantum Groups and Duality

From Hopf Algebras to Multiplicative Unitaries and Beyond

DOWNLOAD NOW »

Author: Thomas Timmermann

Publisher: European Mathematical Society

ISBN: 9783037190432

Category: Mathematics

Page: 407

View: 9990

This book provides an introduction to the theory of quantum groups with emphasis on their duality and on the setting of operator algebras. The book is addressed to graduate students and non-experts from other fields. Only basic knowledge of (multi-)linear algebra is required for the first part, while the second and third part assume some familiarity with Hilbert spaces, CÝsuperscript *¨-algebras, and von Neumann algebras.

An Introduction to Quantum Theory

DOWNLOAD NOW »

Author: Keith Hannabuss

Publisher: Clarendon Press

ISBN: 9780191588730

Category: Science

Page: 394

View: 659

This book provides an introduction to quantum theory primarily for students of mathematics. Although the approach is mainly traditional the discussion exploits ideas of linear algebra, and points out some of the mathematical subtleties of the theory. Amongst the less traditional topics are Bell's inequalities, coherent and squeezed states, and introductions to group representation theory. Later chapters discuss relativistic wave equations and elementary particle symmetries from a group theoretical standpoint rather than the customary Lie algebraic approach. This book is intended for the later years of an undergraduate course or for graduates. It assumes a knowledge of basic linear algebra and elementary group theory, though for convenience these are also summarized in an appendix.

Foundations of Quantum Group Theory

DOWNLOAD NOW »

Author: Shahn Majid

Publisher: Cambridge University Press

ISBN: 9780521648684

Category: Mathematics

Page: 640

View: 1556

Now in paperback, this is a graduate level text for theoretical physicists and mathematicians which systematically lays out the foundations for the subject of Quantum Groups in a clear and accessible way. The topic is developed in a logical manner with quantum groups (Hopf Algebras) treated as mathematical objects in their own right. After formal definitions and basic theory, the book goes on to cover such topics as quantum enveloping algebras, matrix quantum groups, combinatorics, cross products of various kinds, the quantum double, the semiclassical theory of Poisson-Lie groups, the representation theory, braided groups and applications to q-deformed physics. Explicit proofs and many examples will allow the reader quickly to pick up the techniques needed for working in this exciting new field.

A Quantum Groups Primer

DOWNLOAD NOW »

Author: Shahn Majid

Publisher: Cambridge University Press

ISBN: 9780521010412

Category: Mathematics

Page: 169

View: 446

Self-contained introduction to quantum groups as algebraic objects, suitable as a textbook for graduate courses.

Introduction to Quantum Groups

DOWNLOAD NOW »

Author: George Lusztig

Publisher: Springer Science & Business Media

ISBN: 9780817647179

Category: Mathematics

Page: 352

View: 6165

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.

Quantum Groups in Two-Dimensional Physics

DOWNLOAD NOW »

Author: Cisar Gómez,Martm Ruiz-Altaba,German Sierra

Publisher: Cambridge University Press

ISBN: 9780521020046

Category: Science

Page: 476

View: 670

A 1996 introduction to integrability and conformal field theory in two dimensions using quantum groups.

A Course in the Theory of Groups

DOWNLOAD NOW »

Author: Derek Robinson

Publisher: Springer Science & Business Media

ISBN: 1468401289

Category: Mathematics

Page: 481

View: 1134

" A group is defined by means of the laws of combinations of its symbols," according to a celebrated dictum of Cayley. And this is probably still as good a one-line explanation as any. The concept of a group is surely one of the central ideas of mathematics. Certainly there are a few branches of that science in which groups are not employed implicitly or explicitly. Nor is the use of groups confined to pure mathematics. Quantum theory, molecular and atomic structure, and crystallography are just a few of the areas of science in which the idea of a group as a measure of symmetry has played an important part. The theory of groups is the oldest branch of modern algebra. Its origins are to be found in the work of Joseph Louis Lagrange (1736-1813), Paulo Ruffini (1765-1822), and Evariste Galois (1811-1832) on the theory of algebraic equations. Their groups consisted of permutations of the variables or of the roots of polynomials, and indeed for much of the nineteenth century all groups were finite permutation groups. Nevertheless many of the fundamental ideas of group theory were introduced by these early workers and their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow (1832-1918), Camille Jordan (1838-1922) among others. The concept of an abstract group is clearly recognizable in the work of Arthur Cayley (1821-1895) but it did not really win widespread acceptance until Walther von Dyck (1856-1934) introduced presentations of groups.

Permutation Groups

DOWNLOAD NOW »

Author: John D. Dixon,Brian Mortimer

Publisher: Springer Science & Business Media

ISBN: 1461207312

Category: Mathematics

Page: 348

View: 6248

Following the basic ideas, standard constructions and important examples in the theory of permutation groups, the book goes on to develop the combinatorial and group theoretic structure of primitive groups leading to the proof of the pivotal ONan-Scott Theorem which links finite primitive groups with finite simple groups. Special topics covered include the Mathieu groups, multiply transitive groups, and recent work on the subgroups of the infinite symmetric groups. With its many exercises and detailed references to the current literature, this text can serve as an introduction to permutation groups in a course at the graduate or advanced undergraduate level, as well as for self-study.

Representations of Algebraic Groups, Quantum Groups and Lie Algebras

AMS-IMS-SIAM Joint Summer Research Conference, July 11-15, 2004, Snowbird Resort, Snowbird, Utah

DOWNLOAD NOW »

Author: Georgia Benkart

Publisher: American Mathematical Soc.

ISBN: 0821839241

Category: Mathematics

Page: 254

View: 692

The book contains several well-written, accessible survey papers in many interrelated areas of current research. These areas cover various aspects of the representation theory of Lie algebras, finite groups of Lie types, Hecke algebras, and Lie super algebras. Geometric methods have been instrumental in representation theory, and these proceedings include surveys on geometric as well as combinatorial constructions of the crystal basis for representations of quantum groups. Humphreys' paper outlines intricate connections among irreducible representations of certain blocks of reduced enveloping algebras of semi-simple Lie algebras in positive characteristic, left cells in two sided cells of affine Weyl groups, and the geometry of the nilpotent orbits. All these papers provide the reader with a broad picture of the interaction of many different research areas and should be helpful to those who want to have a glimpse of current research involving representation theory.

Finite Dimensional Algebras and Quantum Groups

DOWNLOAD NOW »

Author: Bangming Deng

Publisher: American Mathematical Soc.

ISBN: 0821841866

Category: Mathematics

Page: 759

View: 4037

The interplay between finite dimensional algebras and Lie theory dates back many years. In more recent times, these interrelations have become even more strikingly apparent. This text combines, for the first time in book form, the theories of finite dimensional algebras and quantum groups. More precisely, it investigates the Ringel-Hall algebra realization for the positive part of a quantum enveloping algebra associated with a symmetrizable Cartan matrix and it looks closely at the Beilinson-Lusztig-MacPherson realization for the entire quantum $\mathfrak {gl}_n$. The book begins with the two realizations of generalized Cartan matrices, namely, the graph realization and the root datum realization. From there, it develops the representation theory of quivers with automorphisms and the theory of quantum enveloping algebras associated with Kac-Moody Lie algebras. These two independent theories eventually meet in Part 4, under the umbrella of Ringel-Hall algebras. Cartan matrices can also be used to define an important class of groups--Coxeter groups--and their associated Hecke algebras. Hecke algebras associated with symmetric groups give rise to an interesting class of quasi-hereditary algebras, the quantum Schur algebras. The structure of these finite dimensional algebras is used in Part 5 to build the entire quantum $\mathfrak{gl}_n$ through a completion process of a limit algebra (the Beilinson-Lusztig-MacPherson algebra). The book is suitable for advanced graduate students. Each chapter concludes with a series of exercises, ranging from the routine to sketches of proofs of recent results from the current literature.

Lie Groups, Lie Algebras, and Representations

An Elementary Introduction

DOWNLOAD NOW »

Author: Brian Hall

Publisher: Springer

ISBN: 3319134671

Category: Mathematics

Page: 453

View: 5193

This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette

Quantum Groups

A Path to Current Algebra

DOWNLOAD NOW »

Author: Ross Street

Publisher: Cambridge University Press

ISBN: 1139461443

Category: Mathematics

Page: N.A

View: 6823

Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986.

Lectures on Quantum Groups

DOWNLOAD NOW »

Author: Jens Carsten Jantzen

Publisher: American Mathematical Soc.

ISBN: 9780821872345

Category: Mathematics

Page: 266

View: 9840

Starting with the quantum analog of sl2, the author carefully leads the reader through all the details necessary for full understanding of the subject, particularly emphasizing similarities and differences with the classical theory. The final chapters of the book describe the Kashiwara-Lusztig theory of so-called crystal (or canonical) bases in representations of complex semisimple Lie algebra.

Applications of Lie Groups to Differential Equations

DOWNLOAD NOW »

Author: Peter J. Olver

Publisher: Springer Science & Business Media

ISBN: 1468402749

Category: Mathematics

Page: 497

View: 5524

This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.