Programming Computer Vision with Python

Tools and algorithms for analyzing images

DOWNLOAD NOW »

Author: Jan Erik Solem

Publisher: "O'Reilly Media, Inc."

ISBN: 1449341934

Category: Computers

Page: 264

View: 2560

If you want a basic understanding of computer vision’s underlying theory and algorithms, this hands-on introduction is the ideal place to start. You’ll learn techniques for object recognition, 3D reconstruction, stereo imaging, augmented reality, and other computer vision applications as you follow clear examples written in Python. Programming Computer Vision with Python explains computer vision in broad terms that won’t bog you down in theory. You get complete code samples with explanations on how to reproduce and build upon each example, along with exercises to help you apply what you’ve learned. This book is ideal for students, researchers, and enthusiasts with basic programming and standard mathematical skills. Learn techniques used in robot navigation, medical image analysis, and other computer vision applications Work with image mappings and transforms, such as texture warping and panorama creation Compute 3D reconstructions from several images of the same scene Organize images based on similarity or content, using clustering methods Build efficient image retrieval techniques to search for images based on visual content Use algorithms to classify image content and recognize objects Access the popular OpenCV library through a Python interface

Bildverstehen

DOWNLOAD NOW »

Author: Axel Pinz

Publisher: Springer-Verlag

ISBN: 3709193583

Category: Computers

Page: 235

View: 7189

Bildverstehen, Bilder und die ihnen zugrundeliegenden Szenen mit den darin vorkommenden Objekten verstehen und beschreiben, das bedeutet aus der Sicht der Informatik: Sehen mit dem Computer - ‘Computer Vision’. Das Buch behandelt neben wichtigen Merkmalen des menschlichen visuellen Systems auch die nötigen Grundlagen aus digitaler Bildverarbeitung und aus künstlicher Intelligenz. Im Zentrum steht die schrittweise Entwicklung eines neuen Systemmodells für Bildverstehen, anhand dessen verschiedene "Abstraktionsebenen" des maschinellen Sehens, wie Segmentation, Gruppierung auf Aufbau einer Szenenbeschreibung besprochen werden. Das Buch bietet außerdem einen Überblick über gegenwärtige Trends in der Forschung sowie eine sehr aktuelle und ausführliche Bibliographie dieses Fachgebietes. Es liegt hiermit erstmalig eine abgeschlossene, systematische Darstellung dieses noch jungen und in dynamischer Entwicklung begriffenen Fachgebietes vor.

Learning OpenCV 3 Computer Vision with Python - Second Edition

DOWNLOAD NOW »

Author: Joe Minichino

Publisher: N.A

ISBN: 9781785283840

Category: Computers

Page: 266

View: 4614

Unleash the power of computer vision with Python using OpenCVAbout This Book• Create impressive applications with OpenCV and Python• Familiarize yourself with advanced machine learning concepts• Harness the power of computer vision with this easy-to-follow guideWho This Book Is ForIntended for novices to the world of OpenCV and computer vision, as well as OpenCV veterans that want to learn about what's new in OpenCV 3, this book is useful as a reference for experts and a training manual for beginners, or for anybody who wants to familiarize themselves with the concepts of object classification and detection in simple and understandable terms. Basic knowledge about Python and programming concepts is required, although the book has an easy learning curve both from a theoretical and coding point of view.What You Will Learn• Install and familiarize yourself with OpenCV 3's Python API• Grasp the basics of image processing and video analysis• Identify and recognize objects in images and videos• Detect and recognize faces using OpenCV• Train and use your own object classifiers• Learn about machine learning concepts in a computer vision context• Work with artificial neural networks using OpenCV• Develop your own computer vision real-life applicationIn DetailOpenCV 3 is a state-of-the-art computer vision library that allows a great variety of image and video processing operations. Some of the more spectacular and futuristic features such as face recognition or object tracking are easily achievable with OpenCV 3. Learning the basic concepts behind computer vision algorithms, models, and OpenCV's API will enable the development of all sorts of real-world applications, including security and surveillance.Starting with basic image processing operations, the book will take you through to advanced computer vision concepts. Computer vision is a rapidly evolving science whose applications in the real world are exploding, so this book will appeal to computer vision novices as well as experts of the subject wanting to learn the brand new OpenCV 3.0.0. You will build a theoretical foundation of image processing and video analysis, and progress to the concepts of classification through machine learning, acquiring the technical know-how that will allow you to create and use object detectors and classifiers, and even track objects in movies or video camera feeds. Finally, the journey will end in the world of artificial neural networks, along with the development of a hand-written digits recognition application.Style and approachThis book is a comprehensive guide to the brand new OpenCV 3 with Python to develop real-life computer vision applications.

OpenCV 3 Computer Vision with Python Cookbook

Leverage the power of OpenCV 3 and Python to build computer vision applications

DOWNLOAD NOW »

Author: Aleksei Spizhevoi,Aleksandr Rybnikov

Publisher: Packt Publishing Ltd

ISBN: 1788478754

Category: Computers

Page: 306

View: 9663

Recipe-based approach to tackle the most common problems in Computer Vision by leveraging the functionality of OpenCV using Python APIs Key Features ●Build computer vision applications with OpenCV functionality via Python API ●Get to grips with image processing, multiple view geometry, and machine learning ●Learn to use deep learning models for image classification, object detection, and face recognition Book Description OpenCV 3 is a native cross-platform library for computer vision, machine learning, and image processing. OpenCV's convenient high-level APIs hide very powerful internals designed for computational efficiency that can take advantage of multicore and GPU processing. This book will help you tackle increasingly challenging computer vision problems by providing a number of recipes that you can use to improve your applications. In this book, you will learn how to process an image by manipulating pixels and analyze an image using histograms. Then, we'll show you how to apply image filters to enhance image content and exploit the image geometry in order to relay different views of a pictured scene. We’ll explore techniques to achieve camera calibration and perform a multiple-view analysis. Later, you’ll work on reconstructing a 3D scene from images, converting low-level pixel information to high-level concepts for applications such as object detection and recognition. You’ll also discover how to process video from files or cameras and how to detect and track moving objects. Finally, you'll get acquainted with recent approaches in deep learning and neural networks. By the end of the book, you’ll be able to apply your skills in OpenCV to create computer vision applications in various domains. What you will learn ●Get familiar with low-level image processing methods ●See the common linear algebra tools needed in computer vision ●Work with different camera models and epipolar geometry ●Find out how to detect interesting points in images and compare them ●Binarize images and mask out regions of interest ●Detect objects and track them in videos Who this book is for This book is for developers who have a basic knowledge of Python. If you are aware of the basics of OpenCV and are ready to build computer vision systems that are smarter, faster, more complex, and more practical than the competition, then this book is for you.

OpenCV Computer Vision with Python

DOWNLOAD NOW »

Author: Joseph Howse

Publisher: Packt Publishing Ltd

ISBN: 178216393X

Category: Computers

Page: 122

View: 1825

A practical, project-based tutorial for Python developers and hobbyists who want to get started with computer vision with OpenCV and Python.OpenCV Computer Vision with Python is written for Python developers who are new to computer vision and want a practical guide to teach them the essentials. Some understanding of image data (for example, pixels and color channels) would be beneficial. At a minimum you will need access to at least one webcam. Certain exercises require additional hardware like a second webcam, a Microsoft Kinect or an OpenNI-compliant depth sensor such as the Asus Xtion PRO.

OpenCV: Computer Vision Projects with Python

DOWNLOAD NOW »

Author: Joseph Howse,Prateek Joshi,Michael Beyeler

Publisher: Packt Publishing Ltd

ISBN: 1787123847

Category: Computers

Page: 558

View: 6474

Get savvy with OpenCV and actualize cool computer vision applications About This Book Use OpenCV's Python bindings to capture video, manipulate images, and track objects Learn about the different functions of OpenCV and their actual implementations. Develop a series of intermediate to advanced projects using OpenCV and Python Who This Book Is For This learning path is for someone who has a working knowledge of Python and wants to try out OpenCV. This Learning Path will take you from a beginner to an expert in computer vision applications using OpenCV. OpenCV's application are humongous and this Learning Path is the best resource to get yourself acquainted thoroughly with OpenCV. What You Will Learn Install OpenCV and related software such as Python, NumPy, SciPy, OpenNI, and SensorKinect - all on Windows, Mac or Ubuntu Apply "curves" and other color transformations to simulate the look of old photos, movies, or video games Apply geometric transformations to images, perform image filtering, and convert an image into a cartoon-like image Recognize hand gestures in real time and perform hand-shape analysis based on the output of a Microsoft Kinect sensor Reconstruct a 3D real-world scene from 2D camera motion and common camera reprojection techniques Detect and recognize street signs using a cascade classifier and support vector machines (SVMs) Identify emotional expressions in human faces using convolutional neural networks (CNNs) and SVMs Strengthen your OpenCV2 skills and learn how to use new OpenCV3 features In Detail OpenCV is a state-of-art computer vision library that allows a great variety of image and video processing operations. OpenCV for Python enables us to run computer vision algorithms in real time. This learning path proposes to teach the following topics. First, we will learn how to get started with OpenCV and OpenCV3's Python API, and develop a computer vision application that tracks body parts. Then, we will build amazing intermediate-level computer vision applications such as making an object disappear from an image, identifying different shapes, reconstructing a 3D map from images , and building an augmented reality application, Finally, we'll move to more advanced projects such as hand gesture recognition, tracking visually salient objects, as well as recognizing traffic signs and emotions on faces using support vector machines and multi-layer perceptrons respectively. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: OpenCV Computer Vision with Python by Joseph Howse OpenCV with Python By Example by Prateek Joshi OpenCV with Python Blueprints by Michael Beyeler Style and approach This course aims to create a smooth learning path that will teach you how to get started with will learn how to get started with OpenCV and OpenCV 3's Python API, and develop superb computer vision applications. Through this comprehensive course, you'll learn to create computer vision applications from scratch to finish and more!.

Die 4-Stunden-Woche

Mehr Zeit, mehr Geld, mehr Leben

DOWNLOAD NOW »

Author: Timothy Ferriss

Publisher: Ullstein eBooks

ISBN: 3843704457

Category: Business & Economics

Page: 352

View: 710

Warum arbeiten wir uns eigentlich zu Tode? Haben wir nichts Besseres zu tun? Und ob! - sagt Timothy Ferriss. Der junge Unternehmer war lange Workaholic mit 80-Stunden-Woche. Doch dann erfand er MBA- Management by Absence- und ist seitdem freier, reicher, glücklicher. Mit viel Humor, provokanten Denkanstößen und erprobten Tipps erklärt Ferriss, wie sich die 4-Stunden-Woche bei vollem Lohnausgleich verwirklichen lässt. Der Wegweiser für eine Flucht aus dem Hamsterrad und ein Manifest für eine neue Gewichtung zwischen Leben und Arbeiten.

Computer Vision Projects with OpenCV and Python 3

Six end-to-end projects built using machine learning with OpenCV, Python, and TensorFlow

DOWNLOAD NOW »

Author: Matthew Rever

Publisher: Packt Publishing Ltd

ISBN: 1789954908

Category: Computers

Page: 182

View: 9778

Gain a working knowledge of advanced machine learning and explore Python’s powerful tools for extracting data from images and videos Key Features Implement image classification and object detection using machine learning and deep learning Perform image classification, object detection, image segmentation, and other Computer Vision tasks Crisp content with a practical approach to solving real-world problems in Computer Vision Book Description Python is the ideal programming language for rapidly prototyping and developing production-grade codes for image processing and Computer Vision with its robust syntax and wealth of powerful libraries. This book will help you design and develop production-grade Computer Vision projects tackling real-world problems. With the help of this book, you will learn how to set up Anaconda and Python for the major OSes with cutting-edge third-party libraries for Computer Vision. You'll learn state-of-the-art techniques for classifying images, finding and identifying human postures, and detecting faces within videos. You will use powerful machine learning tools such as OpenCV, Dlib, and TensorFlow to build exciting projects such as classifying handwritten digits, detecting facial features,and much more. The book also covers some advanced projects, such as reading text from license plates from real-world images using Google’s Tesseract software, and tracking human body poses using DeeperCut within TensorFlow. By the end of this book, you will have the expertise required to build your own Computer Vision projects using Python and its associated libraries. What you will learn Install and run major Computer Vision packages within Python Apply powerful support vector machines for simple digit classification Understand deep learning with TensorFlow Build a deep learning classifier for general images Use LSTMs for automated image captioning Read text from real-world images Extract human pose data from images Who this book is for Python programmers and machine learning developers who wish to build exciting Computer Vision projects using the power of machine learning and OpenCV will find this book useful. The only prerequisite for this book is that you should have a sound knowledge of Python programming.

Scientific Computing with Python 3

DOWNLOAD NOW »

Author: Claus Fuhrer,Jan Erik Solem,Olivier Verdier

Publisher: Packt Publishing Ltd

ISBN: 1786463644

Category: Computers

Page: 332

View: 1072

An example-rich, comprehensive guide for all of your Python computational needs About This Book Your ultimate resource for getting up and running with Python numerical computations Explore numerical computing and mathematical libraries using Python 3.x code with SciPy and NumPy modules A hands-on guide to implementing mathematics with Python, with complete coverage of all the key concepts Who This Book Is For This book is for anyone who wants to perform numerical and mathematical computations in Python. It is especially useful for developers, students, and anyone who wants to use Python for computation. Readers are expected to possess basic a knowledge of scientific computing and mathematics, but no prior experience with Python is needed. What You Will Learn The principal syntactical elements of Python The most important and basic types in Python The essential building blocks of computational mathematics, linear algebra, and related Python objects Plot in Python using matplotlib to create high quality figures and graphics to draw and visualize your results Define and use functions and learn to treat them as objects How and when to correctly apply object-oriented programming for scientific computing in Python Handle exceptions, which are an important part of writing reliable and usable code Two aspects of testing for scientific programming: Manual and Automatic In Detail Python can be used for more than just general-purpose programming. It is a free, open source language and environment that has tremendous potential for use within the domain of scientific computing. This book presents Python in tight connection with mathematical applications and demonstrates how to use various concepts in Python for computing purposes, including examples with the latest version of Python 3. Python is an effective tool to use when coupling scientific computing and mathematics and this book will teach you how to use it for linear algebra, arrays, plotting, iterating, functions, polynomials, and much more. Style and approach This book takes a concept-based approach to the language rather than a systematic introduction. It is a complete Python tutorial and introduces computing principles, using practical examples to and showing you how to correctly implement them in Python. You'll learn to focus on high-level design as well as the intricate details of Python syntax. Rather than providing canned problems to be solved, the exercises have been designed to inspire you to think about your own code and give you real-world insight.

Computer Vision with Python 3

DOWNLOAD NOW »

Author: Saurabh Kapur

Publisher: Packt Publishing Ltd

ISBN: 1788292723

Category: Computers

Page: 206

View: 8232

Unleash the power of computer vision with Python to carry out image processing and computer vision techniques About This Book Learn how to build a full-fledged image processing application using free tools and libraries Perform basic to advanced image and video stream processing with OpenCV's Python APIs Understand and optimize various features of OpenCV with the help of easy-to-grasp examples Who This Book Is For This book is for Python developers who want to perform image processing. It's ideal for those who want to explore the field of computer vision, and design and develop computer vision applications using Python. The reader is expected to have basic knowledge of Python. What You Will Learn Working with open source libraries such Pillow, Scikit-image, and OpenCV Writing programs such as edge detection, color processing, image feature extraction, and more Implementing feature detection algorithms like LBP and ORB Tracking objects using an external camera or a video file Optical Character Recognition using Machine Learning. Understanding Convolutional Neural Networks to learn patterns in images Leveraging Cloud Infrastructure to provide Computer Vision as a Service In Detail This book is a thorough guide for developers who want to get started with building computer vision applications using Python 3. The book is divided into five sections: The Fundamentals of Image Processing, Applied Computer Vision, Making Applications Smarter,Extending your Capabilities using OpenCV, and Getting Hands on. Throughout this book, three image processing libraries Pillow, Scikit-Image, and OpenCV will be used to implement different computer vision algorithms. The book aims to equip readers to build Computer Vision applications that are capable of working in real-world scenarios effectively. Some of the applications that we will look at in the book are Optical Character Recognition, Object Tracking and building a Computer Vision as a Service platform that works over the internet. Style and approach Each stage of the book elaborates on various concepts and algorithms in image processing/computer vision using Python. This step-by-step guide can be used both as a tutorial and as a reference.

Raspberry-Pi-Kochbuch

Lösungen für alle Software- und Hardware-Probleme. Für alle Versionen inklusive Pi 3 & Zero

DOWNLOAD NOW »

Author: Simon Monk

Publisher: O'Reilly

ISBN: 396010118X

Category: Business & Economics

Page: 484

View: 6624

Das Raspberry-Pi-Universum wächst täglich. Ständig werden neue Erweiterungs-Boards und Software-Bibliotheken für den Single-Board-Computer entwickelt. Die zweite Ausgabe dieses beliebten Kochbuchs bietet mehr als 240 Hands-on-Rezepte für den Betrieb des kleinen Low-Cost-Computers mit Linux und für die Programmierung des Pi mit Python. Außerdem erläutert es die Anbindung von Sensoren, Motoren und anderer Hardware, einschließlich Arduino und das Internet der Dinge. Power-Maker und Autor Simon Monk vermittelt grundlegendes Know-how, das Ihnen hilft, auch neue Technologien und Entwicklungen zu verstehen und so mit dem Raspberry-Pi-Ökosystem mitzuwachsen. Dieses Kochbuch ist ideal für Programmierer und Bastler, die mit dem Pi bereits erste Erfahrungen gemacht haben. Alle Codebeispiele sind auf der Website zum Buch verfügbar. - Richten Sie Ihren Raspberry Pi ein und verbinden Sie ihn mit dem Netz. - Arbeiten Sie mit seinem Linux-basierten Betriebssystem Raspbian. - Lernen Sie, den Pi mit Python zu programmieren. - Verleihen Sie Ihrem Pi "Augen" für Anwendungen, die maschinelles Sehen erfordern. - Steuern Sie Hardware über den GPIO-Anschluss. - Verwenden Sie den Raspberry Pi, um unterschiedliche Motoren zu betreiben. - Arbeiten Sie mit Schaltern, Tastaturen und anderen digitalen Eingaben. - Verwenden Sie Sensoren zur Messung von Temperatur, Licht und Entfernung. - Realisieren Sie auf verschiedenen Wegen eine Verbindung zu IoT-Geräten. - Entwerfen Sie dynamische Projekte mit Raspberry Pi und dem Arduino.

Deep Learning for Computer Vision

Expert techniques to train advanced neural networks using TensorFlow and Keras

DOWNLOAD NOW »

Author: Rajalingappaa Shanmugamani

Publisher: Packt Publishing Ltd

ISBN: 1788293355

Category: Computers

Page: 310

View: 6742

Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.

OpenCV 3 Blueprints

DOWNLOAD NOW »

Author: Joseph Howse,Steven Puttemans,Quan Hua,Utkarsh Sinha

Publisher: Packt Publishing Ltd

ISBN: 1784391425

Category: Computers

Page: 382

View: 6889

Expand your knowledge of computer vision by building amazing projects with OpenCV 3 About This Book Build computer vision projects to capture high-quality image data, detect and track objects, process the actions of humans or animals, and much more Discover practical and interesting innovations in computer vision while building atop a mature open-source library, OpenCV 3 Familiarize yourself with multiple approaches and theories wherever critical decisions need to be made Who This Book Is For This book is ideal for you if you aspire to build computer vision systems that are smarter, faster, more complex, and more practical than the competition. This is an advanced book intended for those who already have some experience in setting up an OpenCV development environment and building applications with OpenCV. You should be comfortable with computer vision concepts, object-oriented programming, graphics programming, IDEs, and the command line. What You Will Learn Select and configure camera systems to see invisible light, fast motion, and distant objects Build a “camera trap”, as used by nature photographers, and process photos to create beautiful effects Develop a facial expression recognition system with various feature extraction techniques and machine learning methods Build a panorama Android application using the OpenCV stitching module in C++ with NDK support Optimize your object detection model, make it rotation invariant, and apply scene-specific constraints to make it faster and more robust Create a person identification and registration system based on biometric properties of that person, such as their fingerprint, iris, and face Fuse data from videos and gyroscopes to stabilize videos shot from your mobile phone and create hyperlapse style videos In Detail Computer vision is becoming accessible to a large audience of software developers who can leverage mature libraries such as OpenCV. However, as they move beyond their first experiments in computer vision, developers may struggle to ensure that their solutions are sufficiently well optimized, well trained, robust, and adaptive in real-world conditions. With sufficient knowledge of OpenCV, these developers will have enough confidence to go about creating projects in the field of computer vision. This book will help you tackle increasingly challenging computer vision problems that you may face in your careers. It makes use of OpenCV 3 to work around some interesting projects. Inside these pages, you will find practical and innovative approaches that are battle-tested in the authors' industry experience and research. Each chapter covers the theory and practice of multiple complementary approaches so that you will be able to choose wisely in your future projects. You will also gain insights into the architecture and algorithms that underpin OpenCV's functionality. We begin by taking a critical look at inputs in order to decide which kinds of light, cameras, lenses, and image formats are best suited to a given purpose. We proceed to consider the finer aspects of computational photography as we build an automated camera to assist nature photographers. You will gain a deep understanding of some of the most widely applicable and reliable techniques in object detection, feature selection, tracking, and even biometric recognition. We will also build Android projects in which we explore the complexities of camera motion: first in panoramic image stitching and then in video stabilization. By the end of the book, you will have a much richer understanding of imaging, motion, machine learning, and the architecture of computer vision libraries and applications! Style and approach This book covers a combination of theory and practice. We examine blueprints for specific projects and discuss the principles behind these blueprints, in detail.

OpenCV with Python Blueprints

DOWNLOAD NOW »

Author: Michael Beyeler

Publisher: Packt Publishing Ltd

ISBN: 1785289861

Category: Computers

Page: 230

View: 646

Design and develop advanced computer vision projects using OpenCV with Python About This Book Program advanced computer vision applications in Python using different features of the OpenCV library Practical end-to-end project covering an important computer vision problem All projects in the book include a step-by-step guide to create computer vision applications Who This Book Is For This book is for intermediate users of OpenCV who aim to master their skills by developing advanced practical applications. Readers are expected to be familiar with OpenCV's concepts and Python libraries. Basic knowledge of Python programming is expected and assumed. What You Will Learn Generate real-time visual effects using different filters and image manipulation techniques such as dodging and burning Recognize hand gestures in real time and perform hand-shape analysis based on the output of a Microsoft Kinect sensor Learn feature extraction and feature matching for tracking arbitrary objects of interest Reconstruct a 3D real-world scene from 2D camera motion and common camera reprojection techniques Track visually salient objects by searching for and focusing on important regions of an image Detect faces using a cascade classifier and recognize emotional expressions in human faces using multi-layer peceptrons (MLPs) Recognize street signs using a multi-class adaptation of support vector machines (SVMs) Strengthen your OpenCV2 skills and learn how to use new OpenCV3 features In Detail OpenCV is a native cross platform C++ Library for computer vision, machine learning, and image processing. It is increasingly being adopted in Python for development. OpenCV has C++/C, Python, and Java interfaces with support for Windows, Linux, Mac, iOS, and Android. Developers using OpenCV build applications to process visual data; this can include live streaming data from a device like a camera, such as photographs or videos. OpenCV offers extensive libraries with over 500 functions This book demonstrates how to develop a series of intermediate to advanced projects using OpenCV and Python, rather than teaching the core concepts of OpenCV in theoretical lessons. Instead, the working projects developed in this book teach the reader how to apply their theoretical knowledge to topics such as image manipulation, augmented reality, object tracking, 3D scene reconstruction, statistical learning, and object categorization. By the end of this book, readers will be OpenCV experts whose newly gained experience allows them to develop their own advanced computer vision applications. Style and approach This book covers independent hands-on projects that teach important computer vision concepts like image processing and machine learning for OpenCV with multiple examples.

OpenCV with Python By Example

DOWNLOAD NOW »

Author: Prateek Joshi

Publisher: Packt Publishing Ltd

ISBN: 178528987X

Category: Computers

Page: 296

View: 5337

Build real-world computer vision applications and develop cool demos using OpenCV for Python About This Book Learn how to apply complex visual effects to images using geometric transformations and image filters Extract features from an image and use them to develop advanced applications Build algorithms to help you understand the image content and perform visual searches Who This Book Is For This book is intended for Python developers who are new to OpenCV and want to develop computer vision applications with OpenCV-Python. This book is also useful for generic software developers who want to deploy computer vision applications on the cloud. It would be helpful to have some familiarity with basic mathematical concepts such as vectors, matrices, and so on. What You Will Learn Apply geometric transformations to images, perform image filtering, and convert an image into a cartoon-like image Detect and track various body parts such as the face, nose, eyes, ears, and mouth Stitch multiple images of a scene together to create a panoramic image Make an object disappear from an image Identify different shapes, segment an image, and track an object in a live video Recognize an object in an image and build a visual search engine Reconstruct a 3D map from images Build an augmented reality application In Detail Computer vision is found everywhere in modern technology. OpenCV for Python enables us to run computer vision algorithms in real time. With the advent of powerful machines, we are getting more processing power to work with. Using this technology, we can seamlessly integrate our computer vision applications into the cloud. Web developers can develop complex applications without having to reinvent the wheel. This book will walk you through all the building blocks needed to build amazing computer vision applications with ease. We start off with applying geometric transformations to images. We then discuss affine and projective transformations and see how we can use them to apply cool geometric effects to photos. We will then cover techniques used for object recognition, 3D reconstruction, stereo imaging, and other computer vision applications. This book will also provide clear examples written in Python to build OpenCV applications. The book starts off with simple beginner's level tasks such as basic processing and handling images, image mapping, and detecting images. It also covers popular OpenCV libraries with the help of examples. The book is a practical tutorial that covers various examples at different levels, teaching you about the different functions of OpenCV and their actual implementation. Style and approach This is a conversational-style book filled with hands-on examples that are really easy to understand. Each topic is explained very clearly and is followed by a programmatic implementation so that the concept is solidified. Each topic contributes to something bigger in the following chapters, which helps you understand how to piece things together to build something big and complex.

Raspberry Pi Computer Vision Programming

DOWNLOAD NOW »

Author: Ashwin Pajankar

Publisher: Packt Publishing Ltd

ISBN: 1784395609

Category: Computers

Page: 178

View: 5679

This book is intended for novices, as well as seasoned Raspberry Pi and Python enthusiasts, who would like to explore the area of computer vision. Readers with very little programming or coding/scripting experience can create wonderful image processing and computer vision applications with relatively fewer lines of code in Python.

Practical Computer Vision with SimpleCV

The Simple Way to Make Technology See

DOWNLOAD NOW »

Author: Kurt Demaagd,Anthony Oliver,Nathan Oostendorp,Katherine Scott

Publisher: "O'Reilly Media, Inc."

ISBN: 144934383X

Category: Computers

Page: 254

View: 8216

Learn how to build your own computer vision (CV) applications quickly and easily with SimpleCV, an open source framework written in Python. Through examples of real-world applications, this hands-on guide introduces you to basic CV techniques for collecting, processing, and analyzing streaming digital images. You’ll then learn how to apply these methods with SimpleCV, using sample Python code. All you need to get started is a Windows, Mac, or Linux system, and a willingness to put CV to work in a variety of ways. Programming experience is optional. Capture images from several sources, including webcams, smartphones, and Kinect Filter image input so your application processes only necessary information Manipulate images by performing basic arithmetic on pixel values Use feature detection techniques to focus on interesting parts of an image Work with several features in a single image, using the NumPy and SciPy Python libraries Learn about optical flow to identify objects that change between two image frames Use SimpleCV’s command line and code editor to run examples and test techniques

Matlab für Dummies

DOWNLOAD NOW »

Author: Jim Sizemore

Publisher: John Wiley & Sons

ISBN: 352780871X

Category: Computers

Page: 416

View: 3736

Ob Naturwissenschaftler, Mathematiker, Ingenieur oder Datenwissenschaftler - mit MATLAB haben Sie ein mächtiges Tool in der Hand, das Ihnen die Arbeit mit Ihren Daten erleichtert. Aber wie das mit manch mächtigen Dingen so ist - es ist auch ganz schön kompliziert. Aber keine Sorge! Jim Sizemore führt Sie in diesem Buch Schritt für Schritt an das Programm heran - von der Installation und den ersten Skripten bis hin zu aufwändigen Berechnungen, der Erstellung von Grafiken und effizienter Fehlerbehebung. Sie werden begeistert sein, was Sie mit MATLAB alles anstellen können.

Programmieren lernen mit Python

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868999477

Category: Computers

Page: 312

View: 7408

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Jenseits reiner Theorie: Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen: Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält. Starten Sie durch: Beginnen Sie mit den Grundlagen der Programmierung und den verschiedenen Programmierkonzepten, und lernen Sie, wie ein Informatiker zu programmieren.