Process Mining

Data Science in Action

DOWNLOAD NOW »

Author: Wil M.P. van der Aalst

Publisher: Springer

ISBN: 3662498510

Category: Computers

Page: 467

View: 669

This is the second edition of Wil van der Aalst’s seminal book on process mining, which now discusses the field also in the broader context of data science and big data approaches. It includes several additions and updates, e.g. on inductive mining techniques, the notion of alignments, a considerably expanded section on software tools and a completely new chapter of process mining in the large. It is self-contained, while at the same time covering the entire process-mining spectrum from process discovery to predictive analytics. After a general introduction to data science and process mining in Part I, Part II provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Next, Part III focuses on process discovery as the most important process mining task, while Part IV moves beyond discovering the control flow of processes, highlighting conformance checking, and organizational and time perspectives. Part V offers a guide to successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM and several commercial products. Lastly, Part VI takes a step back, reflecting on the material presented and the key open challenges. Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers.

Process Mining

Data Science in Action

DOWNLOAD NOW »

Author: Wil M P Van Der Aalst

Publisher: Springer

ISBN: 9783662570418

Category:

Page: 488

View: 7553

The first to cover this missing link between data mining and process modeling, this book provides real-world techniques for monitoring and analyzing processes in real time. It is a powerful new tool destined to play a key role in business process management.

Process Mining

Data Science in Action

DOWNLOAD NOW »

Author: Wil M.P. van der Aalst

Publisher: Springer

ISBN: 9783662498507

Category: Computers

Page: 467

View: 2175

This is the second edition of Wil van der Aalst’s seminal book on process mining, which now discusses the field also in the broader context of data science and big data approaches. It includes several additions and updates, e.g. on inductive mining techniques, the notion of alignments, a considerably expanded section on software tools and a completely new chapter of process mining in the large. It is self-contained, while at the same time covering the entire process-mining spectrum from process discovery to predictive analytics. After a general introduction to data science and process mining in Part I, Part II provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Next, Part III focuses on process discovery as the most important process mining task, while Part IV moves beyond discovering the control flow of processes, highlighting conformance checking, and organizational and time perspectives. Part V offers a guide to successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM and several commercial products. Lastly, Part VI takes a step back, reflecting on the material presented and the key open challenges. Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers.

Process Mining in Healthcare

Evaluating and Exploiting Operational Healthcare Processes

DOWNLOAD NOW »

Author: Ronny S. Mans,Wil M.P. van der Aalst,Rob J. B. Vanwersch

Publisher: Springer

ISBN: 3319160710

Category: Computers

Page: 91

View: 2450

What are the possibilities for process mining in hospitals? In this book the authors provide an answer to this question by presenting a healthcare reference model that outlines all the different classes of data that are potentially available for process mining in healthcare and the relationships between them. Subsequently, based on this reference model, they explain the application opportunities for process mining in this domain and discuss the various kinds of analyses that can be performed. They focus on organizational healthcare processes rather than medical treatment processes. The combination of event data and process mining techniques allows them to analyze the operational processes within a hospital based on facts, thus providing a solid basis for managing and improving processes within hospitals. To this end, they also explicitly elaborate on data quality issues that are relevant for the data aspects of the healthcare reference model. This book mainly targets advanced professionals involved in areas related to business process management, business intelligence, data mining, and business process redesign for healthcare systems as well as graduate students specializing in healthcare information systems and process analysis.

A Primer on Process Mining

Practical Skills with Python and Graphviz

DOWNLOAD NOW »

Author: Diogo R. Ferreira

Publisher: Springer

ISBN: 3319564277

Category: Business & Economics

Page: 96

View: 7034

The main goal of this book is to explain the core ideas of process mining, and to demonstrate how they can be implemented using just some basic tools that are available to any computer scientist or data scientist. It describes how to analyze event logs in order to discover the behavior of real-world business processes. The end result can often be visualized as a graph, and the book explains how to use Python and Graphviz to render these graphs intuitively. Overall, it enables the reader to implement process mining techniques on his or her own, independently of any specific process mining tool. An introduction to two popular process mining tools, namely Disco and ProM, is also provided. The book will be especially valuable for self-study or as a precursor to a more advanced text. Practitioners and students will be able to follow along on their own, even if they have no prior knowledge of the topic. After reading this book, they will be able to more confidently proceed to the research literature if needed.

Data Mining Applications with R

DOWNLOAD NOW »

Author: Yanchang Zhao,Yonghua Cen

Publisher: Academic Press

ISBN: 0124115209

Category: Computers

Page: 514

View: 8684

Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries Presents various case studies in real-world applications, which will help readers to apply the techniques in their work Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves

Perspectives on Data Science for Software Engineering

DOWNLOAD NOW »

Author: Tim Menzies,Laurie Williams,Thomas Zimmermann

Publisher: Morgan Kaufmann

ISBN: 0128042613

Category: Computers

Page: 408

View: 1891

Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community’s leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. Presents the wisdom of community experts, derived from a summit on software analytics Provides contributed chapters that share discrete ideas and technique from the trenches Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data Presented in clear chapters designed to be applicable across many domains

Doing Data Science

Straight Talk from the Frontline

DOWNLOAD NOW »

Author: Cathy O'Neil,Rachel Schutt

Publisher: "O'Reilly Media, Inc."

ISBN: 144936389X

Category: Computers

Page: 408

View: 6185

Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Practical Predictive Analytics

DOWNLOAD NOW »

Author: Ralph Winters

Publisher: Packt Publishing Ltd

ISBN: 1785880462

Category: Computers

Page: 576

View: 5892

Make sense of your data and predict the unpredictable About This Book A unique book that centers around develop six key practical skills needed to develop and implement predictive analytics Apply the principles and techniques of predictive analytics to effectively interpret big data Solve real-world analytical problems with the help of practical case studies and real-world scenarios taken from the world of healthcare, marketing, and other business domains Who This Book Is For This book is for those with a mathematical/statistics background who wish to understand the concepts, techniques, and implementation of predictive analytics to resolve complex analytical issues. Basic familiarity with a programming language of R is expected. What You Will Learn Master the core predictive analytics algorithm which are used today in business Learn to implement the six steps for a successful analytics project Classify the right algorithm for your requirements Use and apply predictive analytics to research problems in healthcare Implement predictive analytics to retain and acquire your customers Use text mining to understand unstructured data Develop models on your own PC or in Spark/Hadoop environments Implement predictive analytics products for customers In Detail This is the go-to book for anyone interested in the steps needed to develop predictive analytics solutions with examples from the world of marketing, healthcare, and retail. We'll get started with a brief history of predictive analytics and learn about different roles and functions people play within a predictive analytics project. Then, we will learn about various ways of installing R along with their pros and cons, combined with a step-by-step installation of RStudio, and a description of the best practices for organizing your projects. On completing the installation, we will begin to acquire the skills necessary to input, clean, and prepare your data for modeling. We will learn the six specific steps needed to implement and successfully deploy a predictive model starting from asking the right questions through model development and ending with deploying your predictive model into production. We will learn why collaboration is important and how agile iterative modeling cycles can increase your chances of developing and deploying the best successful model. We will continue your journey in the cloud by extending your skill set by learning about Databricks and SparkR, which allow you to develop predictive models on vast gigabytes of data. Style and Approach This book takes a practical hands-on approach wherein the algorithms will be explained with the help of real-world use cases. It is written in a well-researched academic style which is a great mix of theoretical and practical information. Code examples are supplied for both theoretical concepts as well as for the case studies. Key references and summaries will be provided at the end of each chapter so that you can explore those topics on their own.

Data Science for Business

What You Need to Know about Data Mining and Data-Analytic Thinking

DOWNLOAD NOW »

Author: Foster Provost,Tom Fawcett

Publisher: "O'Reilly Media, Inc."

ISBN: 144937428X

Category: Computers

Page: 414

View: 5234

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Data Mining and Machine Learning in Cybersecurity

DOWNLOAD NOW »

Author: Sumeet Dua,Xian Du

Publisher: CRC Press

ISBN: 9781439839430

Category: Computers

Page: 256

View: 3876

With the rapid advancement of information discovery techniques, machine learning and data mining continue to play a significant role in cybersecurity. Although several conferences, workshops, and journals focus on the fragmented research topics in this area, there has been no single interdisciplinary resource on past and current works and possible paths for future research in this area. This book fills this need. From basic concepts in machine learning and data mining to advanced problems in the machine learning domain, Data Mining and Machine Learning in Cybersecurity provides a unified reference for specific machine learning solutions to cybersecurity problems. It supplies a foundation in cybersecurity fundamentals and surveys contemporary challenges—detailing cutting-edge machine learning and data mining techniques. It also: Unveils cutting-edge techniques for detecting new attacks Contains in-depth discussions of machine learning solutions to detection problems Categorizes methods for detecting, scanning, and profiling intrusions and anomalies Surveys contemporary cybersecurity problems and unveils state-of-the-art machine learning and data mining solutions Details privacy-preserving data mining methods This interdisciplinary resource includes technique review tables that allow for speedy access to common cybersecurity problems and associated data mining methods. Numerous illustrative figures help readers visualize the workflow of complex techniques and more than forty case studies provide a clear understanding of the design and application of data mining and machine learning techniques in cybersecurity.

Data Smart

Using Data Science to Transform Information into Insight

DOWNLOAD NOW »

Author: John W. Foreman

Publisher: John Wiley & Sons

ISBN: 1118839862

Category: Business & Economics

Page: 432

View: 441

Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along: Mathematical optimization, including non-linear programming and genetic algorithms Clustering via k-means, spherical k-means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag-of-words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

Data Mining and Learning Analytics

Applications in Educational Research

DOWNLOAD NOW »

Author: Samira ElAtia,Osmar R. Za?ane,Donald Ipperciel

Publisher: John Wiley & Sons

ISBN: 1118998235

Category: Computers

Page: 320

View: 9385

Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

Analytics in a Big Data World

The Essential Guide to Data Science and its Applications

DOWNLOAD NOW »

Author: Bart Baesens

Publisher: John Wiley & Sons

ISBN: 1118892747

Category: Business & Economics

Page: 256

View: 3403

The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities.

Handbook of Statistical Analysis and Data Mining Applications

DOWNLOAD NOW »

Author: Robert Nisbet,Gary Miner,Ken Yale

Publisher: Elsevier

ISBN: 0124166458

Category: Mathematics

Page: 822

View: 2217

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Managing and Mining Graph Data

DOWNLOAD NOW »

Author: Charu C. Aggarwal,Haixun Wang

Publisher: Springer Science & Business Media

ISBN: 1441960457

Category: Computers

Page: 600

View: 9425

Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.

Data Science from Scratch

First Principles with Python

DOWNLOAD NOW »

Author: Joel Grus

Publisher: "O'Reilly Media, Inc."

ISBN: 1491904402

Category: BUSINESS & ECONOMICS

Page: 330

View: 4380

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

The Big Book of Dashboards

Visualizing Your Data Using Real-World Business Scenarios

DOWNLOAD NOW »

Author: Steve Wexler,Jeffrey Shaffer,Andy Cotgreave

Publisher: John Wiley & Sons

ISBN: 1119282780

Category: Business & Economics

Page: 448

View: 6975

The definitive reference book with real-world solutions you won't find anywhere else The Big Book of Dashboards presents a comprehensive reference for those tasked with building or overseeing the development of business dashboards. Comprising dozens of examples that address different industries and departments (healthcare, transportation, finance, human resources, marketing, customer service, sports, etc.) and different platforms (print, desktop, tablet, smartphone, and conference room display) The Big Book of Dashboards is the only book that matches great dashboards with real-world business scenarios. By organizing the book based on these scenarios and offering practical and effective visualization examples, The Big Book of Dashboards will be the trusted resource that you open when you need to build an effective business dashboard. In addition to the scenarios there's an entire section of the book that is devoted to addressing many practical and psychological factors you will encounter in your work. It's great to have theory and evidenced-based research at your disposal, but what will you do when somebody asks you to make your dashboard 'cooler' by adding packed bubbles and donut charts? The expert authors have a combined 30-plus years of hands-on experience helping people in hundreds of organizations build effective visualizations. They have fought many 'best practices' battles and having endured bring an uncommon empathy to help you, the reader of this book, survive and thrive in the data visualization world. A well-designed dashboard can point out risks, opportunities, and more; but common challenges and misconceptions can make your dashboard useless at best, and misleading at worst. The Big Book of Dashboards gives you the tools, guidance, and models you need to produce great dashboards that inform, enlighten, and engage.

Workflow Patterns

The Definitive Guide

DOWNLOAD NOW »

Author: Nick Russell,Wil M.P. van der Aalst,Arthur H. M. ter Hofstede

Publisher: MIT Press

ISBN: 0262029820

Category: Computers

Page: 384

View: 2801

A comprehensive guide to well-known workflow patterns: recurrent, generic business process constructs, described from the control-flow, data, and resource perspectives.

Think Like a Data Scientist

Tackle the Data Science Process Step-by-step

DOWNLOAD NOW »

Author: Brian Godsey

Publisher: Manning Publications

ISBN: 9781633430273

Category:

Page: 340

View: 3638

Data science is more than just a set of tools and techniques for extracting knowledge from data sets and data streams. Data science is also a process of getting from goals and questions to real, valuable outcomes by exploring, observing, and manipulating a world of data. Traversing this world can be difficult and confusing. Software developers and non-technical folks may struggle with the uncertainty and fuzzy answers that data invariably provide, and statisticians may have trouble working with any of the multitude of relevant software tools that lie outside of their expertise. Others may not even know where to begin. Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. This book helps you fill in conceptual knowledge gaps in the daunting fields of statistics and software development, and relates those skills to the real concerns of data science in the business world. As you work though the many practical examples, you'll use your existing knowledge of statistics and programming to solve real problems in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.