Practical Machine Learning with H2O

Powerful, Scalable Techniques for Deep Learning and AI

DOWNLOAD NOW »

Author: Darren Cook

Publisher: "O'Reilly Media, Inc."

ISBN: 1491964553

Category: Computers

Page: 300

View: 8184

Machine learning has finally come of age. With H2O software, you can perform machine learning and data analysis using a simple open source framework that’s easy to use, has a wide range of OS and language support, and scales for big data. This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms. If you’re familiar with R or Python, know a bit of statistics, and have some experience manipulating data, author Darren Cook will take you through H2O basics and help you conduct machine-learning experiments on different sample data sets. You’ll explore several modern machine-learning techniques such as deep learning, random forests, unsupervised learning, and ensemble learning. Learn how to import, manipulate, and export data with H2O Explore key machine-learning concepts, such as cross-validation and validation data sets Work with three diverse data sets, including a regression, a multinomial classification, and a binomial classification Use H2O to analyze each sample data set with four supervised machine-learning algorithms Understand how cluster analysis and other unsupervised machine-learning algorithms work

Big Data, Cloud and Applications

Third International Conference, BDCA 2018, Kenitra, Morocco, April 4–5, 2018, Revised Selected Papers

DOWNLOAD NOW »

Author: Youness Tabii,Mohamed Lazaar,Mohammed Al Achhab,Nourddine Enneya

Publisher: Springer

ISBN: 3319962922

Category: Computers

Page: 560

View: 7282

This book constitutes the thoroughly refereed proceedings of the Third International Conference on Big Data, Cloud and Applications, BDCA 2018, held in Kenitra, Morocco, in April 2018.The 45 revised full papers presented in this book were carefully selected from 99 submissions with a thorough double-blind review process. They focus on the following topics: big data, cloud computing, machine learning, deep learning, data analysis, neural networks, information system and social media, image processing and applications, and natural language processing.

Einführung in Machine Learning mit Python

Praxiswissen Data Science

DOWNLOAD NOW »

Author: Andreas C. Müller,Sarah Guido

Publisher: O'Reilly

ISBN: 3960101120

Category: Computers

Page: 378

View: 5763

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Handbook of Research on Engineering Education in a Global Context

DOWNLOAD NOW »

Author: Smirnova, Elena V.,Clark, Robin P.

Publisher: IGI Global

ISBN: 1522533966

Category: Education

Page: 543

View: 7982

Engineering education methods and standards are important features of engineering programs that should be carefully designed both to provide students and stakeholders with valuable, active, integrated learning experiences, and to provide a vehicle for assessing program outcomes. With the driving force of the globalization of the engineering profession, standards should be developed for mutual recognition of engineering education across the world, but it is proving difficult to achieve. The Handbook of Research on Engineering Education in a Global Context provides innovative insights into the importance of quality training and preparation for engineering students. It explores the common and current problems encountered in areas such as quality and standards, management information systems, innovation and enhanced learning technologies in education, as well as the challenges of employability, entrepreneurship, and diversity. This publication is vital reference source for science and engineering educators, engineering professionals, and educational administrators interested in topics centered on the education of students in the field of engineering.

R in a Nutshell

DOWNLOAD NOW »

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 1937

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

DOWNLOAD NOW »

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 3132

Machine Learning mit Python

Das Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning

DOWNLOAD NOW »

Author: Sebastian Raschka

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958454240

Category: Computers

Page: 424

View: 4624

Programmieren lernen mit Python

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3955618072

Category: Computers

Page: 320

View: 2997

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Zur aktualisierten Auflage Diese Auflage behandelt Python 3, geht dabei aber auch auf Unterschiede zu Python 2 ein. Außerdem wurde das Buch um die Themen Unicode, List und Dictionary Comprehensions, den Mengen-Typ Set, die String-Format-Methode und print als Funktion ergänzt. Jenseits reiner Theorie Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält.

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

DOWNLOAD NOW »

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 3297

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Scala Machine Learning Projects

Build real-world machine learning and deep learning projects with Scala

DOWNLOAD NOW »

Author: Md. Rezaul Karim

Publisher: Packt Publishing Ltd

ISBN: 1788471474

Category: Computers

Page: 470

View: 1851

Powerful smart applications using deep learning algorithms to dominate numerical computing, deep learning, and functional programming. Key Features Explore machine learning techniques with prominent open source Scala libraries such as Spark ML, H2O, MXNet, Zeppelin, and DeepLearning4j Solve real-world machine learning problems by delving complex numerical computing with Scala functional programming in a scalable and faster way Cover all key aspects such as collection, storing, processing, analyzing, and evaluation required to build and deploy machine models on computing clusters using Scala Play framework. Book Description Machine learning has had a huge impact on academia and industry by turning data into actionable information. Scala has seen a steady rise in adoption over the past few years, especially in the fields of data science and analytics. This book is for data scientists, data engineers, and deep learning enthusiasts who have a background in complex numerical computing and want to know more hands-on machine learning application development. If you're well versed in machine learning concepts and want to expand your knowledge by delving into the practical implementation of these concepts using the power of Scala, then this book is what you need! Through 11 end-to-end projects, you will be acquainted with popular machine learning libraries such as Spark ML, H2O, DeepLearning4j, and MXNet. At the end, you will be able to use numerical computing and functional programming to carry out complex numerical tasks to develop, build, and deploy research or commercial projects in a production-ready environment. What you will learn Apply advanced regression techniques to boost the performance of predictive models Use different classification algorithms for business analytics Generate trading strategies for Bitcoin and stock trading using ensemble techniques Train Deep Neural Networks (DNN) using H2O and Spark ML Utilize NLP to build scalable machine learning models Learn how to apply reinforcement learning algorithms such as Q-learning for developing ML application Learn how to use autoencoders to develop a fraud detection application Implement LSTM and CNN models using DeepLearning4j and MXNet Who this book is for If you want to leverage the power of both Scala and Spark to make sense of Big Data, then this book is for you. If you are well versed with machine learning concepts and wants to expand your knowledge by delving into the practical implementation using the power of Scala, then this book is what you need! Strong understanding of Scala Programming language is recommended. Basic familiarity with machine Learning techniques will be more helpful.

CSS kurz & gut

DOWNLOAD NOW »

Author: Eric A. Meyer

Publisher: O'Reilly Germany

ISBN: 3868991751

Category: Computers

Page: 256

View: 8018

Cascading Style Sheets sind für viele Designer und Webentwickler zu einem unersetzlichen Mittel für effizientes, standardkonformes und browserübergreifendes Webdesign geworden. Angesichts der Fülle an Selektoren und Eigenschaften ist es aber nicht immer leicht, den Überblick über den Standard zu behalten. Darüber hinaus sind mit CSS3 viele spannende Design-Möglichkeiten hinzugekommen, die einen genaueren Blick wert sind. CSS – kurz & gut beinhaltet eine vollständige Referenz aller CSS-Selektoren, Eigenschaften und Werte, die in den Standards CSS2, CSS 2.1 und CSS3 definiert sind. Darüber hinaus enthält der Band eine kurze Einführung in die Funktionsweise von Cascading Style Sheets und berücksichtigt auch neue Konzepte wie beispielsweise Media-Queries, die in CSS3 neu eingeführt wurden.

Statistik-Workshop für Programmierer

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 5460

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Java kurz & gut

DOWNLOAD NOW »

Author: Robert Liguori,Patricia Liguori

Publisher: O'Reilly Germany

ISBN: 3955617599

Category: Computers

Page: 232

View: 2760

Man kann es eigentlich kaum glauben: Diese mächtige Programmiersprache soll in ein kleines Taschenbuch passen? Nun, eine ausführliche Einführung in die Sprache ist Java – kurz & gut natürlich nicht, auch keine vollständige Referenz von A-Z. Dafür findet der erfahrene Programmierer hier aber alles Wichtige, was er bei der täglichen Arbeit braucht. Wie war das mit den Neuerungen in Java 8? Und wie hieß diese Kommandozeilenoption noch einmal genau? Auch ein Profi braucht manchmal eine Gedächtnisstütze. Da kommt diese klug organisierte Spickzettelsammlung gerade recht!

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn

DOWNLOAD NOW »

Author: Jake VanderPlas

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958456979

Category: Computers

Page: 552

View: 9783

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

Fuzzy-Systeme

DOWNLOAD NOW »

Author: Frank Klawonn,Jörg Gebhardt

Publisher: Springer-Verlag

ISBN: 3322867846

Category: Technology & Engineering

Page: 276

View: 2336

Praxiseinstieg Deep Learning

Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen

DOWNLOAD NOW »

Author: Ramon Wartala

Publisher: O'Reilly

ISBN: 3960101570

Category: Computers

Page: 226

View: 5348

Deep Learning ist ein Teilbereich des Machine Learning und basiert auf künstlichen neuronalen Netzen. Dieser praktische Leitfaden bietet einen schnellen Einstieg in die Schlüsseltechnologie und erschließt Grundlagen und Arbeitsweisen von Deep Learning. Anhand Python-basierter Beispielanwendungen wird der Umgang mit den Frameworks Caffe/Caffe2 und TensorFlow gezeigt. Einfache, alltagstaugliche Beispiele laden zum Nachprogrammieren ein. Darüber hinaus erfahren Sie, warum moderne Grafikkarten, Big Data und Cloud Computing beim Deep Learning so wichtig sind. Wenn Sie bereits mit Python, NumPy und matplotlib arbeiten, ermöglicht Ihnen dieses Buch, praktische Erfahrungen mit Deep-Learning-Anwendungen zu machen. Deep Learning – die Hintergründe - Lernmethoden, die Deep Learning zugrunde liegen - Aktuelle Anwendungsfelder wie maschinelle Übersetzungen, Sprach- und Bilderkennung bei Google, Facebook, IBM oder Amazon Der Werkzeugkasten mit Docker - Der Docker-Container zum Buch: Alle nötigen Tools und Programme sind bereits installiert, damit Sie die Beispiele des Buchs und eigene Deep-Learning-Anwendungen leicht ausführen können. - Die Arbeitsumgebung kennenlernen: Jupyter Notebook, Beispieldatensätze, Web Scraping Der Praxiseinstieg - Einführung in Caffe/Caffe2 und TensorFlow - Deep-Learning-Anwendungen nachprogrammieren: Handschrifterkennung, Bilderkennung und -klassifizierung, Deep Dreaming - Lösungen für Big-Data-Szenarien: verteilte Anwendungen, Spark, Cloud-Systeme - Modelle in produktive Systeme überführen

Deep Learning. Das umfassende Handbuch

Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze

DOWNLOAD NOW »

Author: Ian Goodfellow,Yoshua Bengio,Aaron Courville

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958457010

Category: Computers

Page: 912

View: 3088

• Mathematische Grundlagen für Machine und Deep Learning • Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze • Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

DOWNLOAD NOW »

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 5021

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Börsenerfolg ist kein Zufall

die besten Investmentstrategien für das neue Jahrtausend

DOWNLOAD NOW »

Author: Burton G. Malkiel

Publisher: FinanzBuch Verlag

ISBN: 9783932114342

Category: Investments

Page: 411

View: 4033

Analysis für Informatiker

Grundlagen, Methoden, Algorithmen

DOWNLOAD NOW »

Author: Michael Oberguggenberger,Alexander Ostermann

Publisher: Springer-Verlag

ISBN: 3540898239

Category: Computers

Page: 328

View: 5295

Bei dem Thema des Buches spielt das algorithmische Denken eine wichtige Rolle. Die Autoren führen in die Analysis ein, indem sie deren Grundlagen aus algorithmischer Sichtweise entwickeln, die Theorie mittels MATLAB- und Maple-Programmen und Java-Applets anschaulich machen und grundlegende Konzepte der numerischen Analysis behandeln. Das Buch wendet sich an Informatiker im ersten Studienabschnitt und kann als Vorlesungsgrundlage, als Begleittext zur Vorlesung oder zum Selbststudium verwendet werden.