Polymer Blends and Composites

Chemistry and Technology

DOWNLOAD NOW »

Author: Muralisrinivasan Natamai Subramanian

Publisher: John Wiley & Sons

ISBN: 1119383447

Category: Technology & Engineering

Page: 352

View: 6023

Because it is critically important to manufacture quality products, a reasonable balance must be drawn between control requirements and parameters for improved processing method with respect to plastics additives. An important contribution to the commercial polymer industry, Polymer Blends and Composites is one of the first books to combine plastics additives, testing, and quality control. The book is a comprehensive treatise on properties that provides detailed guidelines for selecting and using blends and composites for applications. A valuable resource for operators, processors, engineers, chemists, the book serves to stimulate those already active in natural polymer composites.

Materials Science of Polymers

Plastics, Rubber, Blends and Composites

DOWNLOAD NOW »

Author: A. K. Haghi,Eduardo A. Castro,Sabu Thomas,P. M. Sivakumar,Andrew G. Mercader

Publisher: CRC Press

ISBN: 1482299135

Category: Technology & Engineering

Page: 370

View: 9260

Technical and technological development demands the creation of new materials that are stronger, more reliable, and more durable—materials with new properties. This book skillfully blends and integrates polymer science, plastic technology, and rubber technology to highlight new developments and trends in advanced polyblends. The fundamentals of polymerization, polymer characteristics, rheology and morphology, as well as composition, technology, testing and evaluation of various plastics, rubbers, fibers, adhesives, coatings, and composites are comprehensively presented in this informative volume. The book presents the developments of advanced polyblends and the respective tools to characterize and predict the material properties and behavior. It provides important original and theoretical experimental results that use non-routine methodologies often unfamiliar to many readers. Furthermore chapters on novel applications of more familiar experimental techniques and analyses of composite problems are included, which indicate the need for the new experimental approaches that are presented. This new book: • Provides an up-to-date and thorough exposition of the present state of the art of polyblends and composites • Familiarizes the reader with new aspects of the techniques used in the examination of polymers, emphasizing plastic technology and rubber technology • Describes the types of techniques now available to the polymer chemist and technician and discusses their capabilities, limitations, and applications • Provides a balance between materials science and the mechanics aspects, basic and applied research, and high-technology and high-volume (low-cost) composite development Entrepreneurs and professionals engaged in production of as well as research and development in polymers will find the information presented here valuable and informative.

Polymer Science and Technology

Plastics, Rubbers, Blends and Composites

DOWNLOAD NOW »

Author: Premamoy Ghosh

Publisher: Tata McGraw-Hill Education

ISBN: 9780074639948

Category: Plastics

Page: 550

View: 431

Polymer Science and Technology: Plastics, Rubbers, Blends and Composites, 2/e is a renewed outcome of an endeavour in this direction. This revised edition of a widely acclaimed reference and text has been enhanced to give a balanced coverage of the science and technology of polymers, which lend themselves useful as rubbers, plastics, fibres, adhesives, coating and composites. The book has also been designed to have an interdisciplinary relevance and would be of immense use not only to college and university students in the subject area but also entrepreneurs and professionals in diverse area of industrial activity

Handbook of Polymer Blends and Composites

DOWNLOAD NOW »

Author: A. K. Kulshreshtha

Publisher: iSmithers Rapra Publishing

ISBN: 9781859572498

Category: Composite materials

Page: 558

View: 1781

This handbook is part of a four volume handbook intended to provide an overview of the theory and application of polymer blends and composites. Practical and theoretical investigations are presented aimed at generating an understanding of the fundamental nature of polymer mixtures and composites and describing progress in the thermodynamics of mixing (both in solution and solid state) of binary and multi-component systems.

Bio-Based Polymers and Composites

DOWNLOAD NOW »

Author: Richard Wool,Xiuzhi Susan Sun

Publisher: Elsevier

ISBN: 9780080454344

Category: Technology & Engineering

Page: 640

View: 3619

Bio-Based Polymers and Composites is the first book systematically describing the green engineering, chemistry and manufacture of biobased polymers and composites derived from plants. This book gives a thorough introduction to bio-based material resources, availability, sustainability, biobased polymer formation, extraction and refining technologies, and the need for integrated research and multi-disciplinary working teams. It provides an in-depth description of adhesives, resins, plastics, and composites derived from plant oils, proteins, starches, and natural fibers in terms of structures, properties, manufacturing, and product performance. This is an excellent book for scientists, engineers, graduate students and industrial researchers in the field of bio-based materials. * First book describing the utilization of crops to make high performance plastics, adhesives, and composites * Interdisciplinary approach to the subject, integrating genetic engineering, plant science, food science, chemistry, physics, nano-technology, and composite manufacturing. * Explains how to make green materials at low cost from soyoil, proteins, starch, natural fibers, recycled newspapers, chicken feathers and waste agricultural by-products.

Algae Based Polymers, Blends, and Composites

Chemistry, Biotechnology and Materials Science

DOWNLOAD NOW »

Author: Khalid Mahmood Zia,Mohammad Zuber,Muhammad Ali

Publisher: Elsevier

ISBN: 0128123613

Category: Technology & Engineering

Page: 738

View: 7931

Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work. The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials. Provides detailed information on the extraction of useful compounds from algal biomass Highlights the development of a range of polymers, blends, and composites Includes coverage of characterization and processing techniques, enabling research scientists and engineers to apply the information to their own research and development Discusses potential applications and future prospects of algae-based biopolymers, giving the latest insight into the future of these sustainable materials

Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends

DOWNLOAD NOW »

Author: Sabu Thomas,Raghvendra Mishra,Nandakumar Kalarikkal

Publisher: Woodhead Publishing

ISBN: 0081019920

Category: Technology & Engineering

Page: 372

View: 5133

Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends is a comprehensive reference for researchers, students and scientists working in the field of plastics recycling and composites. The book aims to determine the influence of micro and nanofibrillar morphology on the properties of immiscible blend systems. Chapters cover micro and nanofibrillar composites based on polyolefin, liquid crystal polymer, biodegradable polymers, polyester and polyamide blends in various industrial application fields. The book brings together panels of highly-accomplished experts in the field of plastics recycling, blends and composites systems. For several decades, plastic technology has played an important role in many industrial applications, such as packaging, automobiles, aerospace and construction. However the increasing use of plastics creates a lot of waste. This has led to restrictions on the use of some plastics for certain applications and a drive towards recycling of plastics. More recently, microfibrillar in-situ composites have been prepared from waste plastics such as PET/PP, PET/PE and Nylon/PP as a way of formulating new high performance polymer systems. This book tackles these issues and more, and is an ideal resource for anyone interested in polymer blends. Provides information on MFC and NFC based polymer blends that have been accumulated over the last 25 years, providing a useful reference Adopts a novel approach in terms of understanding the relationship between processing, morphology, structure, properties and applications in micro and nanofibrillar composites Contains contributions from leading experts in the field from both industrial and academic research

Polymer Science and Technology

DOWNLOAD NOW »

Author: Joel R. Fried

Publisher: Pearson Education

ISBN: 0137039557

Category: Technology & Engineering

Page: 663

View: 7404

The Definitive Guide to Polymer Principles, Properties, Synthesis, Applications, and Simulations Now fully revised, Polymer Science and Technology, Third Edition, systematically reviews the field's current state and emerging advances. Leading polymer specialist Joel R. Fried offers modern coverage of both processing principles and applications in multiple industries, including medicine, biotechnology, chemicals, and electronics. This edition's new and expanded coverage ranges from advanced synthesis to the latest drug delivery applications. New topics include controlled radical polymerization, click chemistry, green chemistry, block copolymers, nanofillers, electrospinning, and more. A brand-new chapter offers extensive guidance for predicting polymer properties, including additional coverage of group correlations, and new discussions of the use of topological indices and neural networks. This is also the first introductory polymer text to fully explain computational polymer science, including molecular dynamics and Monte Carlo methods. Simulation concepts are supported with many application examples, ranging from prediction of PVT values to permeability and free volume. Fried thoroughly covers synthetic polymer chemistry; polymer properties in solution and in melt, rubber, and solid states; and all important categories of plastics. This revised edition also adds many new calculations, end-of-chapter problems, and references. In-depth coverage includes Polymer synthesis: step- and chain-growth; bulk, solution, suspension, emulsion, solid-state, and plasma; ionic liquids, and macromers; and genetic engineering Amorphous and crystalline states, transitions, mechanical properties, and solid-state characterization Polymers and the environment: degradation, stability, and more Additives, blends, block copolymers, and composites–including interpenetrating networks, nanocomposites, buckyballs, carbon nanotubes, graphene, and POSS Biopolymers, natural polymers, fibers, thermoplastics, elastomers, and thermosets Engineering and specialty polymers, from polycarbonates to ionic polymers and high-performance fibers Polymer rheology, processing, and modeling Correlations and simulations: group contribution, topological indices, artificial neural networks, molecular dynamics, and Monte Carlo simulations

Fundamentals of Conjugated Polymer Blends, Copolymers and Composites

Synthesis, Properties, and Applications

DOWNLOAD NOW »

Author: Parveen Saini

Publisher: John Wiley & Sons

ISBN: 1119137101

Category: Technology & Engineering

Page: 800

View: 5460

Since their discovery in 1977, the evolution of conducting polymers has revolutionized modern science and technology. These polymers enjoy a special status in the area of materials science yet they are not as popular among young readers or common people when compared to other materials like metals, paper, plastics, rubber, textiles, ceramics and composites like concrete. Most importantly, much of the available literature in the form of papers, specific review articles and books is targeted either at advanced readers (scientists/technologists/engineers/senior academicians) or for those who are already familiar with the topic (doctoral/postdoctoral scholars). For a beginner or even school/college students, such compilations are bit difficult to access/digest. In fact, they need proper introduction to the topic of conducting polymers including their discovery, preparation, properties, applications and societal impact, using suitable examples and already known principles/knowledge/phenomenon. Further, active participation of readers in terms of “question & answers”, “fill-in-the-blanks”, “numerical” along with suitable answer key is necessary to maintain the interest and to initiate the “thought process”. The readers also need to know about the drawbacks and any hazards of such materials. Therefore, I believe that a comprehensive source on the science/technology of conducting polymers which maintains a link between grass root fundamentals and state-of-the-art R&D is still missing from the open literature.

Nanostructured Polymer Blends

Chapter 1. Polymer Blends

DOWNLOAD NOW »

Author: Chandran C. Sarath,Robert A. Shanks,S. Thomas

Publisher: Elsevier Inc. Chapters

ISBN: 0128090782

Category: Technology & Engineering

Page: 576

View: 5983

Miscibility and compatibility in polymer blends is a topic of great academic and industrial importance. This is because miscibility and compatibility contribute to morphology, properties, and performance. Miscibility results in one phase; compatibility creates a disperse phase with size and stability determined by interfacial interactions. Miscible polymer properties are averaged similar to a plasticizer polymer, and compatible polymers retain properties of each component, such as toughening or reinforcement. With miscible polymer blends the continuous phase dominates properties; the disperse phase contributes via stress transfer. This chapter revisits the criteria for miscibility or compatibility in polymer blends and the contributors of compatibility compared with miscibility and incompatibility. Development of copolymers and their blending with thermosets and thermoplastics result in complex two-phase morphologies. The dynamics of phase separation observed in polymer blends leading to different morphologies and the criteria for phase separation is explained. A nanometer-dispersed phase requires strong interfacial interactions to stabilize the large interfacial area, and this is favored by rapid spinodal phase separation compared with size diminution by high shear. Nanoblends open up a new arena for polymer blends, and research shows that nanoblends have outstanding optical and mechanical properties.

Monomers, Polymers and Composites from Renewable Resources

DOWNLOAD NOW »

Author: Mohamed Naceur Belgacem,Alessandro Gandini

Publisher: Elsevier

ISBN: 9780080560519

Category: Technology & Engineering

Page: 560

View: 459

The progressive dwindling of fossil resources, coupled with the drastic increase in oil prices, have sparked a feverish activity in search of alternatives based on renewable resources for the production of energy. Given the predominance of petroleum- and carbon-based chemistry for the manufacture of organic chemical commodities, a similar preoccupation has recently generated numerous initiatives aimed at replacing these fossil sources with renewable counterparts. In particular, major efforts are being conducted in the field of polymer science and technology to prepare macromolecular materials based on renewable resources. The concept of the bio-refinery, viz. the rational exploitation of the vegetable biomass in terms of the separation of its components and their utilisation as such, or after suitable chemical modifications, is thus gaining momentum and considerable financial backing from both the public and private sectors. This collection of chapters, each one written by internationally recognised experts in the corresponding field, covers in a comprehensive fashion all the major aspects related to the synthesis, characterization and properties of macromolecular materials prepared using renewable resources as such, or after appropriate modifications. Thus, monomers such as terpenes and furans, oligomers like rosin and tannins, and polymers ranging from cellulose to proteins and including macromolecules synthesized by microbes, are discussed with the purpose of showing the extraordinary variety of materials that can be prepared from their intelligent exploitation. Particular emphasis has been placed on recent advances and imminent perspectives, given the incessantly growing interest that this area is experiencing in both the scientific and technological realms. Discusses bio-refining with explicit application to materials Replete with examples of applications of the concept of sustainable development Presents an impressive variety of novel macromolecular materials

Polymer Blends and Composites

DOWNLOAD NOW »

Author: John A. Manson

Publisher: Springer Science & Business Media

ISBN: 1461517613

Category: Technology & Engineering

Page: 513

View: 1857

The need for writing a monograph on polymer blends and composites became apparent during presentation of material on this subject to our advanced polymers class. Although the flood of important research in this area in the past decade has resulted in many symposia, edited collections of papers, reviews, contributions to scientific journals, and patents, apparently no organized presentation in book form has been forthcoming. In a closely connected way, another strong impetus for writing this monograph arose out of our research programs in the Materials Research Center at Lehigh University. As part of this effort, we had naturally compiled hundreds of references and become acquainted with many leaders in the field of blend and composite research. Perhaps the most important concept stressed over and over again is that engineering materials are useful because of their complexity, not in spite of it. Blends and composites are toughened because many modes of resistance to failure are available. Although such multimechanism processes are diffi cult to describe with a unified theory. we have presented available develop ments in juxtaposition with the experimental portions. The arguments somewhat resemble the classical discussion of resonance in organic chemistry, where molecular structures increase in stability as more electronic configura tions become available.

Materials Science of Polymers

Plastics, Rubber, Blends and Composites

DOWNLOAD NOW »

Author: A. K. Haghi,Eduardo A. Castro,Sabu Thomas,P. M. Sivakumar,Andrew G. Mercader

Publisher: Apple Academic Press

ISBN: 9781771880664

Category: Technology & Engineering

Page: 370

View: 6972

Technical and technological development demands the creation of new materials that are stronger, more reliable, and more durable—materials with new properties. This book skillfully blends and integrates polymer science, plastic technology, and rubber technology to highlight new developments and trends in advanced polyblends. The fundamentals of polymerization, polymer characteristics, rheology and morphology, as well as composition, technology, testing and evaluation of various plastics, rubbers, fibers, adhesives, coatings, and composites are comprehensively presented in this informative volume. The book presents the developments of advanced polyblends and the respective tools to characterize and predict the material properties and behavior. It provides important original and theoretical experimental results that use non-routine methodologies often unfamiliar to many readers. Furthermore chapters on novel applications of more familiar experimental techniques and analyses of composite problems are included, which indicate the need for the new experimental approaches that are presented. This new book: • Provides an up-to-date and thorough exposition of the present state of the art of polyblends and composites • Familiarizes the reader with new aspects of the techniques used in the examination of polymers, emphasizing plastic technology and rubber technology • Describes the types of techniques now available to the polymer chemist and technician and discusses their capabilities, limitations, and applications • Provides a balance between materials science and the mechanics aspects, basic and applied research, and high-technology and high-volume (low-cost) composite development Entrepreneurs and professionals engaged in production of as well as research and development in polymers will find the information presented here valuable and informative.

Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites

DOWNLOAD NOW »

Author: P. M. Visakh,Mong Liang

Publisher: William Andrew

ISBN: 0128012749

Category: Technology & Engineering

Page: 252

View: 6215

Poly(Ethylene Terephthalate) (PET) is an industrially important material which is not treated specifically in any other book. Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites fills this gap and systematically guides the reader through all aspects of PET and its blends, composites and nanocomposites. It covers theoretical fundamentals, nanocomposites preparation, modification techniques, structure-property relationships, characterisation of the different blends and composites, and material choice for specific applications. Consisting of contributions from experts in the field this book is a useful reference for the researchers and engineers working on the development and characterization of PET materials as well as on implementing them in real-world products. It can also be used as a standard reference for deeper insight in the mechanical, thermal, thermo-mechanical and visco-elastic aspects in product design decisions. Provides a systematic overview on all types of poly(ethylene) terephthalate (PET) based blends, composites and nanocomposites Informs about characterization, structure-property relationships and types of modifications Links material properties to specific applications, enabling engineers to make the best material choice to increase product performance and cost efficiency, in industries ranging from aerospace to energy

Basics of Troubleshooting in Plastics Processing

An Introductory Practical Guide

DOWNLOAD NOW »

Author: Muralisrinivasan Natamai Subramanian

Publisher: John Wiley & Sons

ISBN: 9781118071717

Category: Technology & Engineering

Page: 224

View: 3903

The Basics of Troubleshooting in Plastics Processing is a condensed practical guide that gives the reader a broad introduction to properties of thermoplastics plastics, additives, the major processes (extrusion, injection molding, rotational molding, blow molding, and thermoforming), as well as troubleshooting. The main goal is to provide the plastics processor with an improved understanding of the basics by explaining the science behind the technology. Machine details are minimized as the emphasis is on processing problems and the defects in an effort to focus on basic root causes to problems and how to solve them. The book’s framework is troubleshooting in plastics processing because of the importance it has to the eventual production of high quality end products. Each chapter contains both practical and detailed technical information. This basic guide provides state-of-the-art information on: Processing problems and defects during manufacturing Plastics materials, their properties and characterization The plastics processing techniques Plastics additives Troubleshooting of the 5 main plastics processes References for further reading

Modification of Polymer Properties

DOWNLOAD NOW »

Author: Carlos Federico Jasso-Gastinel,José M. Kenny

Publisher: William Andrew

ISBN: 0323443982

Category: Technology & Engineering

Page: 232

View: 7847

Modification of Polymer Properties provides, for the first time, in one title, the latest information on gradient IPNs and gradient copolymers. The book covers the broad range of polymer modification routes in a fresh, current view representing a timely addition to the technical literature of this important area. Historically, blends, copolymers, or filled polymers have been developed to meet specific properties, or to optimize the cost/properties relationship. Using the gradient structure approach with conventional radical polymerization, it has been shown that it is possible to optimize properties if appropriate gradients in the composition of copolymer chains are obtained. An overview of the gradient structure approach for designing polymers has not appeared in the recent literature and this title covers the different methods used to modify properties, offering the whole range of ways to modify polymers in just one volume and making this an attractive option for a wide audience of practitioners. The approach for each chapter is to explain the fundamental principles of preparation, cover properties modification, describe future research and applications as examples of materials that may be prepared for specific applications, or that are already in use, in present day applications. The book is for readers that have a basic background in polymer science, as well as those interested in the different ways to combine or modify polymer properties. Provides an integrated view on how to modify polymer properties Presents the entire panorama of polymer properties modification in one reference, covering the essential information in each topic Includes the optimization of properties using gradients in polymers composition or structure

The Elements of Polymer Science and Engineering

An Introductory Text for Engineers and Chemists

DOWNLOAD NOW »

Author: Alfred Rudin

Publisher: Elsevier

ISBN: 0323140343

Category: Science

Page: 485

View: 5222

This introductory text is intended as the basis for a two or three semester course in synthetic macromolecules. It can also serve as a self-instruction guide for engineers and scientists without formal training in the subject who find themselves working with polymers. For this reason, the material covered begins with basic concepts and proceeds to current practice, where appropriate. * * Serves as both a textbook and an introduction for scientists in the field * Problems accompany each chapter

Recycling of Polymers

Methods, Characterization and Applications

DOWNLOAD NOW »

Author: Raju Francis

Publisher: John Wiley & Sons

ISBN: 3527338489

Category: Science

Page: 288

View: 7077

This timely reference on the topic is the only book you need for a complete overview of recyclable polymers. Following an introduction to various polymer structures and their resulting properties, the main part of the book deals with different methods of recycling. It discusses in detail the recycling of such common polymers as polyethylene, polypropylene and PET, as well as rubbers, fibers, engineering polymers, polymer blends and composites. The whole is rounded off with a look at future technologies and the toxicological impact of recycled polymers. An indispensable reference source for those working in the field, whether in academia or industry, and whether newcomers or advanced readers.

Introduction to Physical Polymer Science

DOWNLOAD NOW »

Author: L. H. Sperling

Publisher: John Wiley & Sons

ISBN: 1119103746

Category: Technology & Engineering

Page: 880

View: 4077

An Updated Edition of the Classic Text Polymers constitute the basis for the plastics, rubber, adhesives, fiber, and coating industries. The Fourth Edition of Introduction to Physical Polymer Science acknowledges the industrial success of polymers and the advancements made in the field while continuing to deliver the comprehensive introduction to polymer science that made its predecessors classic texts. The Fourth Edition continues its coverage of amorphous and crystalline materials, glass transitions, rubber elasticity, and mechanical behavior, and offers updated discussions of polymer blends, composites, and interfaces, as well as such basics as molecular weight determination. Thus, interrelationships among molecular structure, morphology, and mechanical behavior of polymers continue to provide much of the value of the book. Newly introduced topics include: * Nanocomposites, including carbon nanotubes and exfoliated montmorillonite clays * The structure, motions, and functions of DNA and proteins, as well as the interfaces of polymeric biomaterials with living organisms * The glass transition behavior of nano-thin plastic films In addition, new sections have been included on fire retardancy, friction and wear, optical tweezers, and more. Introduction to Physical Polymer Science, Fourth Edition provides both an essential introduction to the field as well as an entry point to the latest research and developments in polymer science and engineering, making it an indispensable text for chemistry, chemical engineering, materials science and engineering, and polymer science and engineering students and professionals.

High Temperature Polymer Blends

DOWNLOAD NOW »

Author: Mark T. DeMeuse

Publisher: Elsevier

ISBN: 0857099019

Category: Technology & Engineering

Page: 232

View: 2579

Polymer blends offer properties not easily obtained through the use of a single polymer, including the ability to withstand high temperatures. High Temperature Polymer Blends outlines the characteristics, developments, and use of high temperature polymer blends. The first chapter introduces high temperature polymer blends, their general principles, and thermodynamics. Further chapters go on to deal with the characterization of high temperature polymer blends for specific uses, such as fuel cells and aerospace applications. The book discusses different types of high temperature polymer blends, including liquid crystal polymers, polysulfones, and polybenzimidazole polymer blends and their commercial applications. High Temperature Polymer Blends provides a key reference for material scientists, polymer scientists, chemists, and plastic engineers, as well as academics in these fields. Reviews characterization methods and analysis of the thermodynamic properties of high temperature polymer blends Reviews the use of materials such as liquid crystals as reinforcements as well as applications in such areas as energy and aerospace engineering