Neural Network Design (2nd Edition)

DOWNLOAD NOW »

Author: Martin Hagan,Howard Demuth,Mark Beale,Orlando De Jesus

Publisher: N.A

ISBN: 9780971732117

Category:

Page: 800

View: 8316

This book provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems.

An Introduction to Neural Networks

DOWNLOAD NOW »

Author: Kevin Gurney

Publisher: CRC Press

ISBN: 1482286998

Category: Computers

Page: 234

View: 6375

Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Neural Networks for Applied Sciences and Engineering

From Fundamentals to Complex Pattern Recognition

DOWNLOAD NOW »

Author: Sandhya Samarasinghe

Publisher: CRC Press

ISBN: 9781420013061

Category: Computers

Page: 570

View: 1767

In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in scientific data analysis, this book provides a solid foundation of basic neural network concepts. It contains an overview of neural network architectures for practical data analysis followed by extensive step-by-step coverage on linear networks, as well as, multi-layer perceptron for nonlinear prediction and classification explaining all stages of processing and model development illustrated through practical examples and case studies. Later chapters present an extensive coverage on Self Organizing Maps for nonlinear data clustering, recurrent networks for linear nonlinear time series forecasting, and other network types suitable for scientific data analysis. With an easy to understand format using extensive graphical illustrations and multidisciplinary scientific context, this book fills the gap in the market for neural networks for multi-dimensional scientific data, and relates neural networks to statistics. Features § Explains neural networks in a multi-disciplinary context § Uses extensive graphical illustrations to explain complex mathematical concepts for quick and easy understanding ? Examines in-depth neural networks for linear and nonlinear prediction, classification, clustering and forecasting § Illustrates all stages of model development and interpretation of results, including data preprocessing, data dimensionality reduction, input selection, model development and validation, model uncertainty assessment, sensitivity analyses on inputs, errors and model parameters Sandhya Samarasinghe obtained her MSc in Mechanical Engineering from Lumumba University in Russia and an MS and PhD in Engineering from Virginia Tech, USA. Her neural networks research focuses on theoretical understanding and advancements as well as practical implementations.

Fundamentals of Artificial Neural Networks

DOWNLOAD NOW »

Author: Mohamad H. Hassoun

Publisher: MIT Press

ISBN: 9780262082396

Category: Computers

Page: 511

View: 7101

Fundamentals of Building Energy Dynamics assesses how and why buildings use energy, and how energy use and peak demand can be reduced. It provides a basis for integrating energy efficiency and solar approaches in ways that will allow building owners and designers to balance the need to minimize initial costs, operating costs, and life-cycle costs with need to maintain reliable building operations and enhance environmental quality both inside and outside the building. Chapters trace the development of building energy systems and analyze the demand side of solar applications as a means for determining what portion of a building's energy requirements can potentially be met by solar energy.Following the introduction, the book provides an overview of energy use patterns in the aggregate U.S. building population. Chapter 3 surveys work on the energy flows in an individual building and shows how these flows interact to influence overall energy use. Chapter 4 presents the analytical methods, techniques, and tools developed to calculate and analyze energy use in buildings, while chapter 5 provides an extensive survey of the energy conservation and management strategies developed in the post-energy crisis period.The approach taken is a commonsensical one, starting with the proposition that the purpose of buildings is to house human activities, and that conservation measures that negatively affect such activities are based on false economies. The goal is to determine rational strategies for the design of new buildings, and the retrofit of existing buildings to bring them up to modern standards of energy use. The energy flows examined are both large scale (heating systems) and small scale (choices among appliances).Solar Heat Technologies: Fundamentals and Applications, Volume 4

Neural Network Models

Theory and Projects

DOWNLOAD NOW »

Author: Philippe de Wilde

Publisher: Springer Science & Business Media

ISBN: 184628614X

Category: Technology & Engineering

Page: 174

View: 5284

Providing an in-depth treatment of neural network models, this volume explains and proves the main results in a clear and accessible way. It presents the essential principles of nonlinear dynamics as derived from neurobiology, and investigates the stability, convergence behaviour and capacity of networks.

Neural Network Programming with Java

DOWNLOAD NOW »

Author: Fabio M. Soares,Alan M. F. Souza

Publisher: Packt Publishing Ltd

ISBN: 1787122972

Category: Computers

Page: 270

View: 5338

Create and unleash the power of neural networks by implementing professional Java code About This Book Learn to build amazing projects using neural networks including forecasting the weather and pattern recognition Explore the Java multi-platform feature to run your personal neural networks everywhere This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This book is for Java developers who want to know how to develop smarter applications using the power of neural networks. Those who deal with a lot of complex data and want to use it efficiently in their day-to-day apps will find this book quite useful. Some basic experience with statistical computations is expected. What You Will Learn Develop an understanding of neural networks and how they can be fitted Explore the learning process of neural networks Build neural network applications with Java using hands-on examples Discover the power of neural network's unsupervised learning process to extract the intrinsic knowledge hidden behind the data Apply the code generated in practical examples, including weather forecasting and pattern recognition Understand how to make the best choice of learning parameters to ensure you have a more effective application Select and split data sets into training, test, and validation, and explore validation strategies In Detail Want to discover the current state-of-art in the field of neural networks that will let you understand and design new strategies to apply to more complex problems? This book takes you on a complete walkthrough of the process of developing basic to advanced practical examples based on neural networks with Java, giving you everything you need to stand out. You will first learn the basics of neural networks and their process of learning. We then focus on what Perceptrons are and their features. Next, you will implement self-organizing maps using practical examples. Further on, you will learn about some of the applications that are presented in this book such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning, and characters recognition (OCR). Finally, you will learn methods to optimize and adapt neural networks in real time. All the examples generated in the book are provided in the form of illustrative source code, which merges object-oriented programming (OOP) concepts and neural network features to enhance your learning experience. Style and approach This book takes you on a steady learning curve, teaching you the important concepts while being rich in examples. You'll be able to relate to the examples in the book while implementing neural networks in your day-to-day applications.

Artificial Neural Networks

A Practical Course

DOWNLOAD NOW »

Author: Ivan Nunes da Silva,Danilo Hernane Spatti,Rogerio Andrade Flauzino,Luisa Helena Bartocci Liboni,Silas Franco dos Reis Alves

Publisher: Springer

ISBN: 3319431625

Category: Technology & Engineering

Page: 307

View: 1375

This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

Neural Smithing

Supervised Learning in Feedforward Artificial Neural Networks

DOWNLOAD NOW »

Author: Russell Reed,Robert J Marks

Publisher: MIT Press

ISBN: 0262181908

Category: Computers

Page: 346

View: 4567

Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition).This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.

Neural Networks in Chemistry and Drug Design

An Introduction

DOWNLOAD NOW »

Author: Jure Zupan,Johann Gasteiger

Publisher: Wiley-VCH

ISBN: 9783527297788

Category: Science

Page: 402

View: 6992

The second edition of this highly regarded text has been substantially expanded. Part VI "Applications" is updated from 12 to 21 examples with a new focus on applications in the area of drug design. From reviews of the first edition: ?This book offers a sound introduction to artificial neuronal networks, with insights into their architecture, functioning, and applications, which is intended not only for chemists... The excellent quality of the contents and the presentation should ensure that it reaches a wide international readership.?(Angewandte Chemie) 'One of the most useful aspects of the book is a walk-through of the whole process for each application: experimental design, choice and organization of the data, selection of network architecture and parameters, and analysis of the results... The careful approach embodied in this book is an antidote to the hype which has attended neuronal networks in recent years.' (Journal of the American Chemical Society) '... highly recommended ... could become a scientific bestseller ...' (Spectroscopy Europe) 'The attractive and clear presentation of this book make it recommendable to the complete novice.' (The Analyst) 'We strongly recommend it for library purchase and it will be a useful text for lecture courses.' (Chemistry & Industry)

Object-oriented Neural Networks in C++

DOWNLOAD NOW »

Author: Joey Rogers

Publisher: Morgan Kaufmann

ISBN: 9780125931151

Category: Computers

Page: 310

View: 6250

This book/disk package provides the reader with a foundation from which any neural network architecture can be constructed. The author has employed object-oriented design and object-oriented programming concepts to develop a set of foundation neural network classes, and shows how these classes can be used to implement a variety of neural network architecture with a great deal of ease and flexibility.

Introduction to Neural Networks with Java

DOWNLOAD NOW »

Author: Jeff Heaton

Publisher: Heaton Research, Inc.

ISBN: 1604390085

Category: Computers

Page: 440

View: 2964

Introduction to Neural Networks in Java, Second Edition, introduces the Java programmer to the world of Neural Networks and Artificial Intelligence. Neural network architectures such as the feedforward, Hopfield, and Self Organizing Map networks are discussed. Training techniques such as Backpropagation, Genetic Algorithms and Simulated Annealing are also introduced. Practical examples are given for each neural network. Examples include the Traveling Salesman problem, handwriting recognition, financial prediction, game strategy, learning mathematical functions and special application to Internet bots. All Java source code can be downloaded online.

Principles of Artificial Neural Networks

DOWNLOAD NOW »

Author: Daniel Graupe

Publisher: World Scientific

ISBN: 9814522740

Category: Computers

Page: 364

View: 4855

Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition OCo all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining."

Neural Networks for Pattern Recognition

DOWNLOAD NOW »

Author: Christopher M. Bishop

Publisher: Oxford University Press

ISBN: 0198538642

Category: Computers

Page: 482

View: 4209

`Readers will emerge with a rigorous statistical grounding in the theory of how to construct and train neural networks in pattern recognition' New Scientist

Neural Networks: Tricks of the Trade

DOWNLOAD NOW »

Author: Grégoire Montavon,Geneviève Orr,Klaus-Robert Müller

Publisher: Springer

ISBN: 3642352898

Category: Computers

Page: 769

View: 3646

The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.

Neural Networks

A Comprehensive Foundation

DOWNLOAD NOW »

Author: Simon Haykin

Publisher: IEEE

ISBN: 9780780334946

Category: Computers

Page: 700

View: 4607

Recurrent Neural Networks for Prediction

Learning Algorithms, Architectures and Stability

DOWNLOAD NOW »

Author: Danilo P. Mandic,Jonathon Chambers

Publisher: John Wiley & Sons Incorporated

ISBN: 9780471495178

Category: Computers

Page: 285

View: 2697

New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters. ? Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectures together with the concepts of modularity and nesting ? Examines stability and relaxation within RNNs ? Presents on-line learning algorithms for nonlinear adaptive filters and introduces new paradigms which exploit the concepts of a priori and a posteriori errors, data-reusing adaptation, and normalisation ? Studies convergence and stability of on-line learning algorithms based upon optimisation techniques such as contraction mapping and fixed point iteration ? Describes strategies for the exploitation of inherent relationships between parameters in RNNs ? Discusses practical issues such as predictability and nonlinearity detecting and includes several practical applications in areas such as air pollutant modelling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications. VISIT OUR COMMUNICATIONS TECHNOLOGY WEBSITE! http://www.wiley.co.uk/commstech/ VISIT OUR WEB PAGE! http://www.wiley.co.uk/

Mathematical Methods for Neural Network Analysis and Design

DOWNLOAD NOW »

Author: Richard M. Golden

Publisher: MIT Press

ISBN: 9780262071741

Category: Computers

Page: 419

View: 9731

This graduate-level text teaches students how to use a small number of powerful mathematical tools for analyzing and designing a wide variety of artificial neural network (ANN) systems, including their own customized neural networks. Mathematical Methods for Neural Network Analysis and Design offers an original, broad, and integrated approach that explains each tool in a manner that is independent of specific ANN systems. Although most of the methods presented are familiar, their systematic application to neural networks is new. Included are helpful chapter summaries and detailed solutions to over 100 ANN system analysis and design problems. For convenience, many of the proofs of the key theorems have been rewritten so that the entire book uses a relatively uniform notion. This text is unique in several ways. It is organized according to categories of mathematical tools—for investigating the behavior of an ANN system, for comparing (and improving) the efficiency of system computations, and for evaluating its computational goals— that correspond respectively to David Marr's implementational, algorithmic, and computational levels of description. And instead of devoting separate chapters to different types of ANN systems, it analyzes the same group of ANN systems from the perspective of different mathematical methodologies. A Bradford Book