Matrix Algebra

Theory, Computations and Applications in Statistics

DOWNLOAD NOW »

Author: James E. Gentle

Publisher: Springer

ISBN: 3319648675

Category: Mathematics

Page: 648

View: 5517

Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

Matrix Algebra

Theory, Computations, and Applications in Statistics

DOWNLOAD NOW »

Author: James E. Gentle

Publisher: Springer Science & Business Media

ISBN: 0387708723

Category: Computers

Page: 528

View: 4180

This much-needed work presents, among other things, the relevant aspects of the theory of matrix algebra for applications in statistics. Written in an informal style, it addresses computational issues and places more emphasis on applications than existing texts.

Matrix Algebra

Theory, Computations, and Applications in Statistics

DOWNLOAD NOW »

Author: James E. Gentle

Publisher: Springer Science & Business Media

ISBN: 0387708731

Category: Mathematics

Page: 530

View: 1633

Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

Numerical Linear Algebra for Applications in Statistics

DOWNLOAD NOW »

Author: James E. Gentle

Publisher: Springer Science & Business Media

ISBN: 1461206235

Category: Mathematics

Page: 221

View: 4168

Accurate and efficient computer algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Regardless of the software system used, the book describes and gives examples of the use of modern computer software for numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes the relevant properties of matrix inverses, factorisations, matrix and vector norms, and other topics in linear algebra. The book is essentially self- contained, with the topics addressed constituting the essential material for an introductory course in statistical computing. Numerous exercises allow the text to be used for a first course in statistical computing or as supplementary text for various courses that emphasise computations.

Linear Algebra and Matrix Analysis for Statistics

DOWNLOAD NOW »

Author: Sudipto Banerjee,Anindya Roy

Publisher: CRC Press

ISBN: 1420095382

Category: Mathematics

Page: 580

View: 9807

Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.

Matrix Algebra: Exercises and Solutions

DOWNLOAD NOW »

Author: David A. Harville

Publisher: Springer Science & Business Media

ISBN: 1461301815

Category: Mathematics

Page: 271

View: 4922

This book contains over 300 exercises and solutions that together cover a wide variety of topics in matrix algebra. They can be used for independent study or in creating a challenging and stimulating environment that encourages active engagement in the learning process. The requisite background is some previous exposure to matrix algebra of the kind obtained in a first course. The exercises are those from an earlier book by the same author entitled Matrix Algebra From a Statistician's Perspective. They have been restated (as necessary) to stand alone, and the book includes extensive and detailed summaries of all relevant terminology and notation. The coverage includes topics of special interest and relevance in statistics and related disciplines, as well as standard topics. The overlap with exercises available from other sources is relatively small. This collection of exercises and their solutions will be a useful reference for students and researchers in matrix algebra. It will be of interest to mathematicians and statisticians.

Matrices

Theory and Applications

DOWNLOAD NOW »

Author: Denis Serre

Publisher: Springer Science & Business Media

ISBN: 9781441976833

Category: Mathematics

Page: 289

View: 2775

In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.

Matrix Algebra

DOWNLOAD NOW »

Author: Karim M. Abadir,Jan R. Magnus

Publisher: Cambridge University Press

ISBN: 9780521822893

Category: Business & Economics

Page: 434

View: 865

A stand-alone textbook in matrix algebra for econometricians and statisticians - advanced undergraduates, postgraduates and teachers.

All of Statistics

A Concise Course in Statistical Inference

DOWNLOAD NOW »

Author: Larry Wasserman

Publisher: Springer Science & Business Media

ISBN: 0387217363

Category: Mathematics

Page: 442

View: 8524

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Applied Linear Algebra and Matrix Analysis

DOWNLOAD NOW »

Author: Thomas S. Shores

Publisher: Springer

ISBN: 3319747487

Category: Mathematics

Page: 479

View: 1039

This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms. Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises.

Matrix Theory

Basic Results and Techniques

DOWNLOAD NOW »

Author: Fuzhen Zhang

Publisher: Springer Science & Business Media

ISBN: 1475757972

Category: Mathematics

Page: 279

View: 976

This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.

Matrices with Applications in Statistics

DOWNLOAD NOW »

Author: Franklin A. Graybill

Publisher: Duxbury Press

ISBN: 9780534401313

Category: Mathematics

Page: 461

View: 3918

Part of the Duxbury Classic series, Franklin A. Graybill’s MATRICES WITH APPLICATIONS TO STATISTICS focuses primarily on matrices as they relate to areas of multivariate analysis and the linear model. This seminal work is a time tested, authoritative resource for both students and researchers.

Introduction to Statistical Limit Theory

DOWNLOAD NOW »

Author: Alan M. Polansky

Publisher: CRC Press

ISBN: 1420076612

Category: Mathematics

Page: 645

View: 5616

Helping students develop a good understanding of asymptotic theory, Introduction to Statistical Limit Theory provides a thorough yet accessible treatment of common modes of convergence and their related tools used in statistics. It also discusses how the results can be applied to several common areas in the field. The author explains as much of the background material as possible and offers a comprehensive account of the modes of convergence of random variables, distributions, and moments, establishing a firm foundation for the applications that appear later in the book. The text includes detailed proofs that follow a logical progression of the central inferences of each result. It also presents in-depth explanations of the results and identifies important tools and techniques. Through numerous illustrative examples, the book shows how asymptotic theory offers deep insight into statistical problems, such as confidence intervals, hypothesis tests, and estimation. With an array of exercises and experiments in each chapter, this classroom-tested book gives students the mathematical foundation needed to understand asymptotic theory. It covers the necessary introductory material as well as modern statistical applications, exploring how the underlying mathematical and statistical theories work together.

Statistics and Data Analysis for Financial Engineering

with R examples

DOWNLOAD NOW »

Author: David Ruppert,David S. Matteson

Publisher: Springer

ISBN: 1493926144

Category: Business & Economics

Page: 719

View: 9384

The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.

Modern Multivariate Statistical Techniques

Regression, Classification, and Manifold Learning

DOWNLOAD NOW »

Author: Alan J. Izenman

Publisher: Springer Science & Business Media

ISBN: 9780387781891

Category: Mathematics

Page: 733

View: 1654

This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

Matrix Analysis

DOWNLOAD NOW »

Author: Rajendra Bhatia

Publisher: Springer Science & Business Media

ISBN: 1461206537

Category: Mathematics

Page: 349

View: 7150

This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.

Probability for Statistics and Machine Learning

Fundamentals and Advanced Topics

DOWNLOAD NOW »

Author: Anirban DasGupta

Publisher: Springer Science & Business Media

ISBN: 9781441996343

Category: Mathematics

Page: 784

View: 8949

This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.

An Introduction to Statistical Learning

with Applications in R

DOWNLOAD NOW »

Author: Gareth James,Daniela Witten,Trevor Hastie,Robert Tibshirani

Publisher: Springer Science & Business Media

ISBN: 1461471389

Category: Mathematics

Page: 426

View: 8815

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Matrix Analysis for Statistics

DOWNLOAD NOW »

Author: James R. Schott

Publisher: John Wiley & Sons

ISBN: 1119092485

Category: Mathematics

Page: 552

View: 4590

An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

Matrix Algebra Useful for Statistics

DOWNLOAD NOW »

Author: Shayle R. Searle,Andre I. Khuri

Publisher: John Wiley & Sons

ISBN: 1118935144

Category: Mathematics

Page: 512

View: 8876

This book addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations.